Search results

1 – 10 of 91
Open Access
Article
Publication date: 24 October 2018

Samuel Evans, Eric Jones, Peter Fox and Chris Sutcliffe

This paper aims to introduce a novel method for the analysis of open cell porous components fabricated by laser-based powder bed metal additive manufacturing (AM) for the purpose…

1132

Abstract

Purpose

This paper aims to introduce a novel method for the analysis of open cell porous components fabricated by laser-based powder bed metal additive manufacturing (AM) for the purpose of quality control. This method uses photogrammetric analysis, the extraction of geometric information from an image through the use of algorithms. By applying this technique to porous AM components, a rapid, low-cost inspection of geometric properties such as material thickness and pore size is achieved. Such measurements take on greater importance, as the production of porous additive manufactured orthopaedic devices increases in number, causing other, slower and more expensive methods of analysis to become impractical.

Design/methodology/approach

Here the development of the photogrammetric method is discussed and compared to standard techniques including scanning electron microscopy, micro computed tomography scanning and the recently developed focus variation (FV) imaging. The system is also validated against test graticules and simple wire geometries of known size, prior to the more complex orthopaedic structures.

Findings

The photogrammetric method shows an ability to analyse the variability in build fidelity of AM porous structures for use in inspection purposes to compare component properties. While measured values for material thickness and pore size differed from those of other techniques, the new photogrammetric technique demonstrated a low deviation when repeating measurements, and was able to analyse components at a much faster rate and lower cost than the competing systems, with less requirement for specific expertise or training.

Originality/value

The advantages demonstrated by the image-based technique described indicate the system to be suitable for implementation as a means of in-line process control for quality and inspection applications, particularly for high-volume production where existing methods would be impractical.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 31 January 2024

Kilian Fricke, Thomas Bergs, Philipp Ganser and Martin Seimann

The aviation industry has seen consistent growth over the past few decades. To maintain its sustainability and competitiveness, it is important to have a comprehensive…

Abstract

Purpose

The aviation industry has seen consistent growth over the past few decades. To maintain its sustainability and competitiveness, it is important to have a comprehensive understanding of the environmental impacts across the entire life cycle of the industry, including materials, processes and resources; manufacturing and production; lifetime services; reuse; end-of-life; and recycling. One important component of aircraft engines, integral rotors known as Blisks, are made of high-value metallic alloys that require complex and resource-intensive manufacturing processes. The purpose of this paper is to assess the ecological and economical impacts generated through Blisk production and thereby identify significant ‘hot-spots’.

Design/methodology/approach

This paper focuses on the methodology and approach for conducting a full-scale Blisk life cycle assessment (LCA) based on ISO 14040/44. Unlike previous papers in the European Aerospace Science Network series, which focused on the first two stages of LCA, this publication delves into the “life cycle impact assessment” and “interpretation” stages, providing an overview of the life cycle inventory modeling, impact category selection and presenting preliminary LCA results for the Blisk manufacturing process chain.

Findings

The result shows that the milled titanium Blisk has a lower CO2 footprint than the milled nickel Blisk, which is less than half of the global warming potential (GWP) of the milled nickel Blisk. A main contributor to GWP arises from raw material production. However, no recycling scenarios were included in the analysis, which will be the topic of further investigations.

Originality/value

The originality of this work lies in the detailed ecological assessment of the manufacturing for complex engine components and the derivation of hot spots as well as potential improvements in terms of eco-footprint reduction throughout the products cradle-to-gate cycle. The LCA results serve as a basis for future approaches of process chain optimisation, use of “greener” materials and individual process improvements.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 17 March 2022

Toni Luomaranta and Miia Martinsuo

Adopting additive manufacturing (AM) on a large-scale requires an adoption in company value chains. This may happen through product innovation and require interorganizational…

2437

Abstract

Purpose

Adopting additive manufacturing (AM) on a large-scale requires an adoption in company value chains. This may happen through product innovation and require interorganizational cooperation, but the value-adding potential of cooperation and application recognition is still poorly understood. This study aims to investigate the progress of AM adoption in innovation projects featuring AM application recognition and interorganizational cooperation in the value chain.

Design/methodology/approach

A multiple-case study was implemented in successful metallic AM adoption examples to increase the understanding of AM adoption in value chains. Primary data were collected through interviews and documents in three AM projects, and the data were analyzed qualitatively.

Findings

All three AM projects showed evidence of successful AM value chain adoption. Identifying the right application and the added value of AM within it were crucial starting points for finding new value chains. Interorganizational collaboration facilitated both value-based designs and experimentation with new supply chains. Thereby, the focal manufacturing company did not need to invest in AM machines. The key activities of the new value chain actors are mapped in the process of AM adoption.

Research limitations/implications

The cases are set in a business-to-business context, which narrows the transferability of the results. As a theoretical contribution, this paper introduces the concept of AM value chain adoption. The value-adding potential of AM is identified, and the required value-adding activities in collaborative innovation are reported. As a practical implication, the study reveals how companies can learn of AM and adopt AM value chains without investing in AM machines. They can instead leverage relationships with other companies that have the AM knowledge and infrastructure.

Originality/value

This paper introduces AM value chain adoption as a novel, highly interactive phase in the industry-wide adoption of metallic AM. AM value chain adoption is characterized in multi-company collaboration settings, which complements the single-company view dominant in previous research. Theory elaboration is offered through merging technology adoption with external integration from the information processing view, emphasizing the necessity of interorganizational cooperation in AM value chain adoption. Companies can benefit each other during AM adoption, starting with identifying the value-creating opportunities and applications for AM.

Details

Journal of Manufacturing Technology Management, vol. 33 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

11423

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 14 December 2022

Inês A. Ferreira, J.P. Oliveira, Joachim Antonissen and Helena Carvalho

This paper aims to identify the impacts of wire and arc additive manufacturing (WAAM) technology on the green supply chain management (GSCM) performance. Also, it intends to…

3236

Abstract

Purpose

This paper aims to identify the impacts of wire and arc additive manufacturing (WAAM) technology on the green supply chain management (GSCM) performance. Also, it intends to identify the most essential WAAM capabilities.

Design/methodology/approach

An exploratory case study related to a metallurgical company using WAAM technology to repair metallic components was developed. A research framework to identify WAAM production capabilities and the different GSCM performance criteria was proposed based on the current state of the art. Primary qualitative data provided evidence for developing seven propositions relating WAAM capabilities to GSCM performance.

Findings

The paper provides empirical evidence relating to how WAAM production capabilities impact the different performance criteria of the GSCM performance. The results show that “relative advantage” and “supply-side benefits” are critical capabilities developed through WAAM. Furthermore, most of the capabilities regarding “relative advantage” and “supply-side benefits” promote a higher GSCM performance.

Research limitations/implications

This research was carried out using a single case study research design and using qualitative data. Thus, future works are encouraged to test the propositions empirically using quantitative methodologies.

Practical implications

The case study findings support that most WAAM production capabilities promote a higher GSCM performance. Managers could use this research to understand the capabilities developed by this fusion-based additive manufacturing (AM), become aware of the implications of new technology adoption on the supply chain environmental externalities, and develop new business models based on the WAAM capabilities.

Originality/value

This research contributes to expanding the state-of-the art related to WAAM technology by evidencing the relationship between adopting this fusion-based AM technology and green supply chain practices. Also, it provides a set of seven propositions that could be used to theorise the impacts of WAAM adoption on the GSCM performance.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 1
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 15 March 2022

Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…

6578

Abstract

Purpose

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of “multimaterial PBF techniques” is still very new, undeveloped, and of interest to academia and industry on many levels.

Design/methodology/approach

This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.

Findings

The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental “research” questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.

Originality/value

This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 31 August 2012

Yoon Heo and Tran N. Kien

This article examines the impact of the ASEAN Free Trade Area (AFTA) on Korean exports to ASEAN countries by using the system generalized method of moments. The data covered 15…

Abstract

This article examines the impact of the ASEAN Free Trade Area (AFTA) on Korean exports to ASEAN countries by using the system generalized method of moments. The data covered 15 sectors according to their relative importance in Korean exports and spanned from 1980 to 2006. The estimated results suggest that Korea’s exports were diverted to ASEAN members as a result of the AFTA formation. In 5 of the 15 sectors, the AFTA exerted a significant negative effect on Korean exports to ASEAN countries, but for the remaining 9, the results were mixed and statistically insignificant. The results also indicate that the sectoral approach yields more robust and clear-cut results than the aggregate one.

Details

Journal of International Logistics and Trade, vol. 10 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 6 September 2022

Agnieszka Chmielewska, Bartlomiej Adam Wysocki, Elżbieta Gadalińska, Eric MacDonald, Bogusława Adamczyk-Cieślak, David Dean and Wojciech Świeszkowski

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium…

1301

Abstract

Purpose

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium powders using laser powder bed fusion (LPBF). In addition, the influence of manufacturing parameters and different melting strategies, including multiple cycles of remelting, on printability and macro defects, such as pore and crack formation, have been investigated.

Design/methodology/approach

An LPBF process was used to manufacture NiTi alloy from elementally blended powders and was evaluated with the use of a remelting scanning strategy to improve the homogeneity of fabricated specimens. Furthermore, both single melt and up to two remeltings were used.

Findings

The results indicate that remelting can be beneficial for density improvement as well as chemical and phase composition homogenization. Backscattered electron mode in scanning electron microscope showed a reduction in the presence of unmixed Ni and Ti elemental powders in response to increasing the number of remelts. The microhardness values of NiTi parts for the different numbers of melts studied were similar and ranged from 487 to 495 HV. Nevertheless, it was observed that measurement error decreases as the number of remelts increases, suggesting an increase in chemical and phase composition homogeneity. However, X-ray diffraction analysis revealed the presence of multiple phases regardless of the number of melt runs.

Originality/value

For the first time, to the best of the authors’ knowledge, elementally blended NiTi powders were fabricated via LPBF using remelting scanning strategies.

Open Access
Article
Publication date: 28 October 2022

Diqian Ren, Jun-Ki Choi and Kellie Schneider

Because of the significant differences in the features and requirements of specific products and the capabilities of various additive manufacturing (AM) solutions, selecting the…

1524

Abstract

Purpose

Because of the significant differences in the features and requirements of specific products and the capabilities of various additive manufacturing (AM) solutions, selecting the most appropriate AM technology can be challenging. This study aims to propose a method to solve the complex process selection in 3D printing applications, especially by creating a new multicriteria decision-making tool that takes the direct certainty of each comparison to reflect the decision-maker’s desire effectively.

Design/methodology/approach

The methodology proposed includes five steps: defining the AM technology selection decision criteria and constraints, extracting available AM parameters from the database, evaluating the selected AM technology parameters based on the proposed decision-making methodology, improving the accuracy of the decision by adopting newly proposed weighting scheme and selecting optimal AM technologies by integrating information gathered from the whole decision-making process.

Findings

To demonstrate the feasibility and reliability of the proposed methodology, this case study describes a detailed industrial application in rapid investment casting that applies the weightings to a tailored AM technologies and materials database to determine the most suitable AM process. The results showed that the proposed methodology could solve complicated AM process selection problems at both the design and manufacturing stages.

Originality/value

This research proposes a unique multicriteria decision-making solution, which employs an exclusive weightings calculation algorithm that converts the decision-maker's subjective priority of the involved criteria into comparable values. The proposed framework can reduce decision-maker's comparison duty and potentially reduce errors in the pairwise comparisons used in other decision-making methodologies.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 91