Search results

1 – 10 of 319
Article
Publication date: 4 August 2021

Carmen Marina Garcia-Falcon, Tomas Gil-Lopez, Amparo Verdu-Vazquez and Julia Claudia Mirza-Rosca

This paper aims to analyze the corrosion behavior in Ringer solution of six commercially used Ni-based alloys that are present and commonly used as metallic biomaterials.

103

Abstract

Purpose

This paper aims to analyze the corrosion behavior in Ringer solution of six commercially used Ni-based alloys that are present and commonly used as metallic biomaterials.

Design/methodology/approach

The specimens were received in the form of cylindrical ingots and were cut to get five samples of each brand with a cylindrical shape of 2 mm height to conduct the study. In this scientific research, the following techniques were used: open circuit potential, potentiodynamic polarization studies, and electrochemical impedance spectroscopy.

Findings

The study findings revealed the passivation tendency of the different specimens. Additionally, when the materials were compared, it was discovered that the decisive factor for high corrosion resistance was the chromium concentration. However, with similar chromium content, the stronger concentration in molybdenum increased the resistance. According to the results obtained in this investigation, the biological safety of the dental materials studied in Ringer solution was considered very high for specimens 1 and 2, and adequate for the other samples.

Originality/value

Metal alloys used as biomaterials in contact with the human body should be deeply investigated to make sure they are biocompatible and do not cause any harm. The corrosion resistance of an alloy is the most important characteristic for its biological safety, as all problems arise because of the corrosion process. There is scarce investigation in these Ni-based dental biomaterials, and none found in these commercially used dental materials in Ringer solution.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 July 2021

Rajae Jemghili, Abdelmajid Ait Taleb and Mansouri Khalifa

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the…

Abstract

Purpose

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the published studies in this area. This paper aims to evaluate AM research trends based on 4607 publications most cited from year 2010 to 2020.

Design/methodology/approach

The research methodology is bibliometric indicators and network analysis, including analysis based on keywords, citation analysis, productive journal, related published papers and authors indicators. Two free available software were employed VOSviewer and Bibexcel.

Findings

Keywords analysis results indicate that among the AM processes, Selective Laser Melting and Fused Deposition Modeling techniques, are the two processes ranked on top of the techniques employed and studied with 35.76% and 20.09% respectively. The citation analysis by VOSviewer software, reveals that the medical applications field and the fabrication of metal parts are the areas that interest researchers greatly. Different new research niches, as pharmaceutical industry, digital construction and food fabrication are growing topics in AM scientific works. This study reveals that journals “Materials & design”, “Advanced materials”, “Acs applied materials & interfaces”, “Additive manufacturing”, “Advanced functional materials” and “Biofabrication” are the most productive and influential in AM scientific research.

Originality/value

The results and conclusions of this work can be used as indicators of trends in AM research and/or as prospects for future studies in this area.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 August 2019

Sahil Dhiman, Sarabjeet Singh Sidhu, Preetkanwal Singh Bains and Marjan Bahraminasab

With technology advances, metallic implants claim to improve the quality and durability of human life. In the recent decade, Ti-6Al-4V biomaterial has been additively manufactured…

Abstract

Purpose

With technology advances, metallic implants claim to improve the quality and durability of human life. In the recent decade, Ti-6Al-4V biomaterial has been additively manufactured via selective laser melting (SLM) for orthopedic applications. This paper aims to provide state-of-the-art on mechanobiology of these fabricated components.

Design/methodology/approach

A literature review has been done to explore the potential of SLM fabricated Ti-6Al-4V porous lattice structures (LS) as bone substitutes. The emphasize was on the effect of process parameters and porosity on mechanical and biological properties. The papers published since 2007 were considered here. The keywords used to search were porous Ti-6Al-4V, additive manufacturing, metal three-dimensional printing, osseointegration, porous LS, SLM, in vitro and in vivo.

Findings

The properties of SLM porous biomaterials were compared with different human bones, and bulk SLM fabricated Ti-6Al-4V structures. The comparison was also made between LS with different unit cells to find out whether there is any particular design that can mimic the human bone functionality and enhance osseointegration.

Originality/value

The implant porosity plays a crucial role in mechanical and biological characteristics that relies on the optimum controlled process variables and design attributes. It was also indicated that although the mechanical strength (compressive and fatigue) of porous LS is not mostly close to natural cortical bone, elastic modulus can be adjusted to match that of cortical or cancellous bone. Porous Ti-6Al-4V provide favorable bone formation. However, the effect of design variables on biological behavior cannot be fully conclusive as few studies have been dedicated to this.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 November 2017

Soumyajit Mojumder, Soumya Sikdar and Subrata Kumar Ghosh

Artificial biomaterials are implanted to the human body to support the structure depending upon the extent of deformity or damage. This paper aims to formulate an experimental…

Abstract

Purpose

Artificial biomaterials are implanted to the human body to support the structure depending upon the extent of deformity or damage. This paper aims to formulate an experimental approach to assess the suitability of materials that can be used in the manufacture of human implants.

Design/methodology/approach

Five different pin materials such as SS304, Alumina, HDPE, UHMWPE and Brass have been chosen to be suitable for implants. The tribological properties of the aforementioned materials have been tested on a simple pin-on-disc apparatus. EN31 was chosen as the disc material because its hardness value is much higher than that of the pin materials used. The test materials were constructed in the form of spherical end pins to have point contacts and to reduce the depth of wear.

Findings

It has been observed that the polymeric (HDPE and UHMWPE) and ceramic materials (Alumina) are much better than the traditional metallic materials. The wear rate is very low for these materials owing to their self-lubricating properties.

Practical implications

The experimental studies will help predict the performance and life of implant materials in the human body.

Originality/value

In most cases, SS316L that possesses nickel compositions is used as the disc material; SS316L is toxic to the human body. In the present study, a high carbon alloy steel with high degrees of hardness EN31 is used as a disc counter-face material.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 July 2012

A. Safdar, H.Z. He, Liu‐Ying Wei, A. Snis and Luis E. Chavez de Paz

Ti‐6Al‐4V is one of the most attractive materials being used in aerospace, automotive and medical implant industries. Electron beam melting (EBM) is one of the direct digital…

2998

Abstract

Purpose

Ti‐6Al‐4V is one of the most attractive materials being used in aerospace, automotive and medical implant industries. Electron beam melting (EBM) is one of the direct digital manufacturing methods to produce complex geometries of fully dense and near net shape parts. The EBM system provides an opportunity to built metallic objects with different processing parameter settings like beam current, scan speed, probe size on powder, etc. The purpose of this paper is to determine and understand the effect of part's thickness and variation in process parameter settings of the EBM system on surface roughness/topography of EBM fabricated Ti‐6Al‐4V metallic parts.

Design/methodology/approach

A mathematical model based upon response surface methodology (RSM) is developed to study the variation of surface roughness with changing process parameter settings. Surface roughness of the test slabs produced with different parameter settings and thickness has been studied under confocal microscope. Response surface methodology was used to develop a multiple regression model to correlate the effect of variation in EBM process parameters settings and thickness of parts on surface roughness of EBM produced Ti‐6Al‐4V.

Findings

It has been observed that every part produced by EBM system has detectable surface roughness. The surface roughness parameter Ra varies between 1‐20 μm for different samples depending upon the process parameter setting and thickness. The Ra value increases with increasing sample thickness and beam current, and decreases with increase in offset focus and scan speed.

Originality/value

Surface roughness is related to wear and friction property of the material and hence is related to the life time and performance of the part. Surface roughness is an important property of any material to be considered as biomaterial. The surface roughness of the material depends upon the manufacturing method and environment and hence it is controllable either during fabrication or by post processing. From the 1st order regression model developed in this study, it is also evident that sample thickness, scan speed and beam current have relatively more effect on roughness value then the offset focus. With the model obtained equation, a designer can subsequently select the best combination of sample thickness and process parameter values to achieve desired surface roughness.

Article
Publication date: 10 January 2023

Shrutika Sharma, Vishal Gupta and Deepa Mudgal

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the…

Abstract

Purpose

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the need of second operation. This study aims to use additive manufacturing (AM) process for fabrication of biodegradable orthopedic small locking bone plates to overcome complications related to metallic biomaterials.

Design/methodology/approach

Fused deposition modeling technique has been used for fabrication of bone plates. The effect of varying printing parameters such as infill density, layer height, wall thickness and print speed has been studied on tensile and flexural properties of bone plates using response surface methodology-based design of experiments.

Findings

The maximum tensile and flexural strengths are mainly dependent on printing parameters used during the fabrication of bone plates. Tensile and flexural strengths increase with increase in infill density and wall thickness and decrease with increase in layer height and wall thickness.

Research limitations/implications

The present work is focused on bone plates. In addition, different AM techniques can be used for fabrication of other biomedical implants.

Originality/value

Studies on application of AM techniques on distal ulna small locking bone plates have been hardly reported. This work involves optimization of printing parameters for development of distal ulna-based bone plate with high mechanical strength. Characterization of microscopic fractures has also been performed for understanding the fracture behavior of bone plates.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 August 2021

Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Gerardo Beruvides and Rafael Alberto Mujica

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the…

Abstract

Purpose

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the process and optimization approaches reported. All these need to be taken into account for the ongoing development of the SLM technique, particularly in health care applications. The outcomes from this review allow not only to summarize the main features of the process but also to collect a considerable amount of investigation effort so far achieved by the researcher community.

Design/methodology/approach

This paper reviews four significant areas of the selective laser melting (SLM) process of metallic systems within the scope of medical devices as follows: established and novel materials used, process modeling, process tracking and quality evaluation, and finally, the attempts for optimizing some process features such as surface roughness, porosity and mechanical properties. All the consulted literature has been highly detailed and discussed to understand the current and existing research gaps.

Findings

With this review, there is a prevailing need for further investigation on copper alloys, particularly when conformal cooling, antibacterial and antiviral properties are sought after. Moreover, artificial intelligence techniques for modeling and optimizing the SLM process parameters are still at a poor application level in this field. Furthermore, plenty of research work needs to be done to improve the existent online monitoring techniques.

Research limitations/implications

This review is limited only to the materials, models, monitoring methods, and optimization approaches reported on the SLM process for metallic systems, particularly those found in the health care arena.

Practical implications

SLM is a widely used metal additive manufacturing process due to the possibility of elaborating complex and customized tridimensional parts or components. It is corroborated that SLM produces minimal amounts of waste and enables optimal designs that allow considerable environmental advantages and promotes sustainability.

Social implications

The key perspectives about the applications of novel materials in the field of medicine are proposed.

Originality/value

The investigations about SLM contain an increasing amount of knowledge, motivated by the growing interest of the scientific community in this relatively young manufacturing process. This study can be seen as a compilation of relevant researches and findings in the field of the metal printing process.

Details

Rapid Prototyping Journal, vol. 27 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 November 2018

Sarbjit Kaur, Niraj Bala and Charu Khosla

The biomaterials are natural or synthetic materials used to improve quality of life either by replacing tissue/organ or assisting their function in medical field. The purpose of…

248

Abstract

Purpose

The biomaterials are natural or synthetic materials used to improve quality of life either by replacing tissue/organ or assisting their function in medical field. The purpose of the study is to analyze the hydroxyapatite (HAP), HAP-TiO2 (25 percent) composite coatings deposited on 316 LSS by High Velocity Flame Spray (HVFS) technique.

Design/methodology/approach

The coatings exhibit almost uniform and dense microstructure with porosity (HAP = 0.153 and HAP-TiO2 composite = 0.138). Electrochemical corrosion testing was done on the uncoated and coated specimens in Ringer solution (SBF). As-sprayed coatings were characterized by XRD, SEM/EDS and cross-sectional X-ray mapping techniques before and after dipping in Ringer solution. Microhardness of composite coating (568.8 MPa) was found to be higher than HAP coating (353 MPa).

Findings

During investigations, it was observed that the corrosion resistance of steel was found to have increased after the deposition of HAP and HAP-TiO2 composite coatings. Thus, coatings serve as an effective diffusion barrier to prohibit the diffusion of ions from the SBF into the substrate. Composite coatings have been found to be more corrosion resistant as compared to HAP coating in the simulated body fluid.

Research limitations/implications

It has been concluded that corrosion resistance of HAP as well as composite coating is because of the desirable microstructural changes such as low porosity high microhardness and flat splat structures in coatings as compared to bare specimen.

Practical implications

This study is useful in the selection of biomedical implants.

Social implications

This study is useful in the field of biomaterials.

Originality/value

No reported literature on corrosion behavior of HAP+ 25%- TiO2 has been noted till now using flame spray technique. The main focus of the study is to investigate the HAP as well as composite coatings for biomedical applications.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 October 2014

Palash Kumar Maji, Amit Jyoti Banerjee, Partha Sarathi Banerjee and Sankar Karmakar

The purpose of this paper was development of patient-specific femoral prosthesis using rapid prototyping (RP), a part of additive manufacturing (AM) technology, and comparison of…

1231

Abstract

Purpose

The purpose of this paper was development of patient-specific femoral prosthesis using rapid prototyping (RP), a part of additive manufacturing (AM) technology, and comparison of its merits or demerits over CNC machining route.

Design/methodology/approach

The customized femoral prosthesis was developed through computed tomography (CT)-3D CAD-RP-rapid tooling (RT)-investment casting (IC) route using a stereolithography apparatus (SLA-250) RP machine. A similar prosthesis was also developed through conventional CT-CAD-CAM-CNC, using RP models to check the fit before machining. The dimensional accuracy, surface finish, cost and time involvement were compared between these two routes.

Findings

In both the routes, RP had an important role in checking the fit. Through the conventional machining route, higher-dimensional accuracies and surface finish were achieved. On the contrary, RP route involved lesser time and cost, with rougher surface finish on the prosthesis surface and less internal shrinkage porosity. The rougher surface finish of the prosthesis is favourable for bone ingrowths after implantation and porosity reduce the effective stiffness of the prosthesis, leading to reduced stress shielding effect after implantation.

Research limitations/implications

As there is no AM machine for direct fabrication of metallic component like laser engineered net shaping and electron beam melting in our Institute, the metallic prosthesis was developed through RP-RT-IC route using the SLA-250 machine.

Practical implications

The patient-specific prosthesis always provides better fit and favourable stress distribution, leading to longer life of the prosthesis. The described RP route can be followed to develop the customized prosthesis at lower price within the shortest time.

Originality/value

The described methodology of customized prosthesis development through the AM route and its advantages are applicable for development of any metallic prostheses.

Details

Rapid Prototyping Journal, vol. 20 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 January 2010

Xiang Li, Chengtao Wang, Wenguang Zhang and Yuanchao Li

The purpose of this paper is to verify the feasibility and evaluate the compressive properties of Ti6Al4V implants with controlled porosity via electron beam melting process. This…

2499

Abstract

Purpose

The purpose of this paper is to verify the feasibility and evaluate the compressive properties of Ti6Al4V implants with controlled porosity via electron beam melting process. This process might be a promising method to fabricate orthopedic implants with suitable pore architecture and matched mechanical properties.

Design/methodology/approach

Ti6Al4V implants with controlled porosity are produced using an electron beam melting machine. A scanning electron microscope is utilized to examine the macro‐pore structures of the Ti6Al4V implants. The compressive test is performed to investigate the mechanical properties of the porous implants.

Findings

The fabricated samples show a fully interconnected open‐pore network. The compressive yield strength of the Ti6Al4V implants with the porosity of around 51 percent is higher than that of human cortical bone. The Young's modulus of the implants is similar to that of cortical bone.

Research limitations/implications

The surface of samples produced by electron beam melting process is covered with loosely spherical metal particles. Polishing and ultrasonic cleaning have to be used to remove the loose remnants.

Originality/value

This paper presents the potential application in the fabrication of orthopedic or dental implants using electron beam melting process.

Details

Rapid Prototyping Journal, vol. 16 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 319