Search results

1 – 10 of 168
Article
Publication date: 20 March 2017

Michele Chiumenti, Xin Lin, Miguel Cervera, Wei Lei, Yuxiang Zheng and Weidong Huang

This paper aims to address the numerical simulation of additive manufacturing (AM) processes. The numerical results are compared with the experimental campaign carried out at…

1351

Abstract

Purpose

This paper aims to address the numerical simulation of additive manufacturing (AM) processes. The numerical results are compared with the experimental campaign carried out at State Key Laboratory of Solidification Processing laboratories, where a laser solid forming machine, also referred to as laser engineered net shaping, is used to fabricate metal parts directly from computer-aided design models. Ti-6Al-4V metal powder is injected into the molten pool created by a focused, high-energy laser beam and a layer of added material is sinterized according to the laser scanning pattern specified by the user.

Design/methodology/approach

The numerical model adopts an apropos finite element (FE) activation technology, which reproduces the same scanning pattern set for the numerical control system of the AM machine. This consists of a complex sequence of polylines, used to define the contour of the component, and hatches patterns to fill the inner section. The full sequence is given through the common layer interface format, a standard format for different manufacturing processes such as rapid prototyping, shape metal deposition or machining processes, among others. The result is a layer-by-layer metal deposition which can be used to build-up complex structures for components such as turbine blades, aircraft stiffeners, cooling systems or medical implants, among others.

Findings

Ad hoc FE framework for the numerical simulation of the AM process by metal deposition is introduced. Description of the calibration procedure adopted is presented.

Originality/value

The objectives of this paper are twofold: firstly, this work is intended to calibrate the software for the numerical simulation of the AM process, to achieve high accuracy. Secondly, the sensitivity of the numerical model to the process parameters and modeling data is analyzed.

Article
Publication date: 8 January 2020

Md. Rumman Ul Ahsan, Ali Newaz Mohammad Tanvir, Taylor Ross, Ahmed Elsawy, Min-Suk Oh and Duck Bong Kim

Wire + arc additive manufacturing (WAAM) uses existing welding technology to make a part from metal deposited in an almost net shape. WAAM is flexible in that it can use multiple…

1104

Abstract

Purpose

Wire + arc additive manufacturing (WAAM) uses existing welding technology to make a part from metal deposited in an almost net shape. WAAM is flexible in that it can use multiple materials successively or simultaneously during the manufacturing of a single component.

Design/methodology/approach

In this work, a gas metal arc welding (GMAW) based wire + arc additive manufacturing (WAAM) system has been developed to use two material successively and fabricate bimetallic additively manufactured structure (BAMS) of low carbon steel and AISI 316L stainless steel (SS).

Findings

The interface shows two distinctive zones of LCS and SS deposits without any weld defects. The hardness profile shows a sudden increase of hardness at the interface, which is attributed to the migration of chromium from the SS. The tensile test results show that the bimetallic specimens failed at the LCS side, as LCS has lower strength of the materials used.

Originality/value

The microstructural features and mechanical properties are studied in-depth with special emphasis on the bimetallic interface.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2605

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 July 2019

Md. Hazrat Ali, Shaheidula Batai and Dastan Sarbassov

This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been…

2032

Abstract

Purpose

This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been made in this field. A comparative study helps to understand the latest development in materials and future prospect of this technology.

Design/methodology/approach

Nevertheless, a large amount of progress still remains to be made. While some of the works have focused on the performances of the materials, the rest have focused on the development of new methods and techniques in additive manufacturing.

Findings

This paper critically evaluates the current 3D printing technologies, including the development and optimizations made to the printing methods, as well as the printed objects. Meanwhile, previous developments in this area and contributions to the modern trend in manufacturing technology are summarized briefly.

Originality/value

The paper can be summarized in three sections. Firstly, the existing printing methods along with the frequently used printing materials, as well as the processing parameters, and the factors which influence the quality and mechanical performances of the printed objects are discussed. Secondly, the optimization techniques, such as topology, shape, structure and mechanical property, are described. Thirdly, the latest development and applications of additive manufacturing are depicted, and the scope of future research in the relevant area is put forward.

Details

Rapid Prototyping Journal, vol. 25 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2021

Nur Atiqah Hamzah, Mohd Anas Ahmad, Rahil Izzati Mohd Asri, Ezzah Azimah Alias, Mohd Ann Amirul Zulffiqal Md Sahar, Ng Sha Shiong and Zainuriah Hassan

The purpose of this paper is to enhance the efficiency of the LED by introducing three-step magnesium (Mg) doping profile. Attention was paid to the effects of the Mg doping…

Abstract

Purpose

The purpose of this paper is to enhance the efficiency of the LED by introducing three-step magnesium (Mg) doping profile. Attention was paid to the effects of the Mg doping concentration of the first p-GaN layer (i.e. layer close to the active region). Attention was paid to the effects of the Mg doping concentration of the first p-GaN layer (i.e. layer close to the active region).

Design/methodology/approach

Indium gallium nitride (InGaN)–based light-emitting diode (LED) was grown on a 4-inch c-plane patterned sapphire substrate using metal organic chemical vapor deposition. The Cp2Mg flow rates for the second and third p-GaN layers were set at 50 sccm and 325 sccm, respectively. For the first p-GaN layer, the Cp2Mg flow rate varied from 150 sccm to 300 sccm to achieve different Mg dopant concentrations.

Findings

The full width at half maximum (FWHM) for the GaN (102) plane increases with increasing Cp2Mg flow rate. FWHM for the sample with 150, 250 and 300 sccm Cp2Mg flow rates was 233 arcsec, 236 arcsec and 245 arcsec, respectively. This result indicates that the edge and mixed dislocations in the p-GaN layer were increased with increasing Cp2Mg flow rate. Atomic force microscopy (AFM) results reveal that the sample grown with 300 sccm exhibits the highest surface roughness, followed by 150 sccm and 250 sccm. The surface roughness of these samples is 2.40 nm, 2.12 nm and 2.08 nm, respectively. Simultaneously, the photoluminescence (PL) spectrum of the 250 sccm sample shows the highest band edge intensity over the yellow band ratio compared to that of other samples. The light output power measurements found that the sample with 250 sccm exhibits high output power because of sufficient hole injection toward the active region.

Originality/value

Through this study, the three steps of the Mg profile on the p-GaN layer were proposed to show high-efficiency InGaN-based LED. The optimal Mg concentration was studied on the first p-GaN layer (i.e. layer close to active region) to improve the LED performance by varying the Cp2Mg flow rate. This finding was in line with the result of PL and AFM results when the samples with 250 sccm have the highest Mg acceptor and good surface quality of the p-GaN layer. It can be deduced that the first p-GaN layer doping has a significant effect on the crystalline quality, surface roughness and light emission properties of the LED epi structure.

Details

Microelectronics International, vol. 38 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 19 July 2021

Mohd Ann Amirul Zulffiqal Md Sahar, Zainuriah Hassan, Sha Shiong Ng, Way Foong Lim, Khai Shenn Lau, Ezzah Azimah Alias, Mohd Anas Ahmad, Nur Atiqah Hamzah and Rahil Izzati Mohd Asri

The aims of this paper is to study the effects of the V/III ratio of indium gallium nitride (InGaN) quantum wells (QWs) on the structural, optical and electrical properties of…

Abstract

Purpose

The aims of this paper is to study the effects of the V/III ratio of indium gallium nitride (InGaN) quantum wells (QWs) on the structural, optical and electrical properties of near-ultraviolet light-emitting diode (NUV-LED).

Design/methodology/approach

InGaN-based NUV-LED is successfully grown on the c-plane patterned sapphire substrate at atmospheric pressure using metal organic chemical vapor deposition.

Findings

The indium composition and thickness of InGaN QWs increased as the V/III ratio increased from 20871 to 11824, according to high-resolution X-ray diffraction. The V/III ratio was also found to have an important effect on the surface morphology of the InGaN QWs and thus the surface morphology of the subsequent layers. Apart from that, the electroluminescence measurement revealed that the V/III ratio had a major impact on the light output power (LOP) and the emission peak wavelength of the NUV-LED. The LOP increased by up to 53% at 100 mA, and the emission peak wavelength of the NUV-LED changed to a longer wavelength as the V/III ratio decreased from 20871 to 11824.

Originality/value

This study discovered a relation between the V/III ratio and the properties of QWs, which resulted in the LOP enhancement of the NUV-LED. High TMIn flow rates, which produced a low V/III ratio, contribute to the increased LOP of NUV-LED.

Details

Microelectronics International, vol. 38 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 21 March 2016

Kamaljit Singh Boparai, Rupinder Singh and Harwinder Singh

The purpose of this study is to highlight the direct fabrication of rapid tooling (RT) with desired mechanical, tribological and thermal properties using fused deposition

3653

Abstract

Purpose

The purpose of this study is to highlight the direct fabrication of rapid tooling (RT) with desired mechanical, tribological and thermal properties using fused deposition modelling (FDM) process. Further, the review paper demonstrated development procedure of alternative feedstock filament of low-cost composite material for FDM to extend the range of RT applications.

Design/methodology/approach

The alternative materials for FDM and their processing requirements for fabrication in filament form as reported by various researchers have been summarized. The literature demonstrates the role of various post-processing techniques on surface finish of FDM prints. Further, low-cost materials for feedstock filament have been investigated experimentally to check their adaptability/suitability for commercial FDM setup. The approach was to realize the requirements of FDM (melt flow rate, flexibility, stiffness, glass transition temperature and mechanical strength), necessary for the successful run of an alternative filament. The effect of constituents (additives, plasticizers, surfactants and fillers) in polymeric matrix on mechanical, tribological and thermal properties has been investigated.

Findings

It is possible to develop composite material feedstock as filament for commercial FDM setup without changing its hardware and software. Surface finish of the parts can further be improved by applying various post-processing techniques. Most of the composite parts have high mechanical strength, hardness, thermal stability, wear resistant and better bond formation than standard material parts.

Research limitations/implications

Future research may be focused on improving the surface quality of parts fabricated with composite feedstock, solving issues related to the uniform distribution of filled materials during the fabrication of feedstock filament which in turns further increases mechanical strength, high dimensional stability of composite filament and transferring the technology from laboratory scale to various industrial applications.

Practical implications

Potential applications of direct fabrication with RT includes rapid manufacturing (RM) of metal-filled parts and ceramic-filled parts (which have complex shape and cannot be rapidly made by any other manufacturing techniques) in the field of biomedical and dentistry.

Originality/value

This new manufacturing methodology is based on the proper selection and processing of various materials and additives to form high-performance, low-cost composite material feedstock filament (which fulfil the necessary requirements of FDM process). Finally, newly developed feedstock filament material has both quantitative and qualitative advantage in RT and RM applications as compared to standard material filament.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 August 2019

Danielle Strong, Michael Kay, Thomas Wakefield, Issariya Sirichakwal, Brett Conner and Guha Manogharan

Although the adoption of metal additive manufacturing (AM) for production has continuously grown, in-house access to production grade metal AM systems for small and medium…

Abstract

Purpose

Although the adoption of metal additive manufacturing (AM) for production has continuously grown, in-house access to production grade metal AM systems for small and medium enterprises (SMEs) is a major challenge due to costs of acquiring metal AM systems, specifically powder bed fusion AM. On the other hand, AM technology in directed energy deposition (DED) has been evolving in both: processing capabilities and adaptable configuration for integration within existing traditional machines that are available in most SME manufacturing facilities, e.g. computer numerical control (CNC) machining centers. Integrating DED with conventional processes such as machining and grinding into Hybrid AM is well suited for remanufacturing of metal parts. The paper aims to discuss these issues.

Design/methodology/approach

Classical facility location models are employed to understand the effects of SMEs adopting DED systems to offer remanufacturing services. This study identifies strategically located counties in the USA to advance hybrid AM for reverse logistics using North American Industry Classification System (NAICS) data on geographical data, demand, fixed and transportation costs. A case study is also implemented to explore its implications on remanufacturing of high-value parts on the reverse logistics supply chain using an aerospace part and NAICS data on aircraft maintenance, repair and overhaul facilities.

Findings

The results identify the candidate counties, their allocations, allocated demand and total costs. Offering AM remanufacturing services to traditional manufacturers decreases costs for SMEs in the supply chain by minimizing expensive new part replacement. The hubs also benefit from hybrid AM to repair their own parts and tools.

Originality/value

This research provides a unique analysis on reverse logistics through hybrid AM focused on remanufacturing rather than manufacturing. Facility location using real data is used to obtain results and offers insights into integrating AM for often overlooked aspect of remanufacturing. The study shows that SMEs can participate in the evolving AM economy through remanufacturing services using significantly lower investment costs.

Article
Publication date: 1 March 2001

A.A. Tseng and M. Tanaka

Two newly invented deposition techniques for the freeform fabrication of metal and ceramic parts are presented. The first deposition technique studied is one that can deposit…

1075

Abstract

Two newly invented deposition techniques for the freeform fabrication of metal and ceramic parts are presented. The first deposition technique studied is one that can deposit variable sizes of filaments in a controlled manner. The second technique consists of layer deposition using an adjustable planar nozzle to generate layers directly. Laboratory scale apparatus has been built to study the behavior of filament and layer formation of these two techniques. Experiments are conducted in typical operation ranges. Analytical solutions are also developed to parametrically study the effects of changing major operational parameters as well as to provide necessary information for designing the apparatus. All results indicate that the analytical predictions agree very well with the experimental observation. Finally, recommendations on the future development of these two techniques are given.

Details

Rapid Prototyping Journal, vol. 7 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 15 March 2022

Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…

6578

Abstract

Purpose

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of “multimaterial PBF techniques” is still very new, undeveloped, and of interest to academia and industry on many levels.

Design/methodology/approach

This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.

Findings

The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental “research” questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.

Originality/value

This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 168