Search results

1 – 10 of 51
Article
Publication date: 26 July 2013

Pegah Ayatollahi, Ali Asghar Alamdar‐Yazdi and Mohammad Javad Sarraf‐Shirazi

Mercerization is one of the finishing treatments that often are used to improve the dye uptake properties and increase cotton fabrics' luster. Since comfort is a necessity of…

Abstract

Purpose

Mercerization is one of the finishing treatments that often are used to improve the dye uptake properties and increase cotton fabrics' luster. Since comfort is a necessity of clothing and customers desire it more than ever, the finishing treatments that improve some properties of the fabric should not reduce clothing comfort. The aim of this paper was to investigate the effect of cold mercerization on the comfort properties of cotton fabrics.

Design/methodology/approach

A total of 15 woven fabric samples in different structures were randomly chosen. The samples were divided into two groups: the finished fabrics (i.e. those which were run through singing, desizing, and bleaching processes) and the mercerized fabrics (i.e. samples which underwent the singing, desizing, bleaching and mercerizing processes). The mechanical and thermo‐physiological comfort properties of these two groups were evaluated and results were compared.

Findings

The results showed that bending rigidity, shearing rigidity, air permeability, water vapour transmission and thermal resistance increased by cold mercerization. Moreover, frictional restraint, extensibility and wicking decreased. In other words, mercerization can improve some comfort properties of cotton fabrics and weaken the others.

Originality/value

The current literatures don't consider the effect of mercerization on the clothing comfort. The present work intends to evaluate the effect of cold mercerization on the mechanical (tactile) and thermo‐physiological comfort properties of cotton fabrics which are used as summer clothing.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 November 2015

Ihab El-Sayed and S.M. Saleh

The effects that spinning technology and spinning parameters have on the color strength (K/S), strength, and breaking elongation of post dyed and mercerized yarns are investigated…

Abstract

The effects that spinning technology and spinning parameters have on the color strength (K/S), strength, and breaking elongation of post dyed and mercerized yarns are investigated in this study. The emphasis of the study is on the selection of long stable Egyptian cotton varieties, namely Giza 80, Giza 86, and extra long stable Giza 92. The cotton samples are spun by using compact, ring, and open end spinning technologies. For the purpose of this study, different yarn counts and twist multipliers are used. The mechanical properties, such as the tensile strength and breaking elongation of the produced yarn are investigated and compared before and after the mercerization treatment (slack and tension), followed by a reactive dyeing process. All of the samples are prepared for dyeing after mercerization. The dyeing performance in terms of the K/S is studied. When the results are examined, it is found that the samples that have undergone (bleaching + slack mercerization + reactive dyeing) generally have higher K/S values than samples that have undergone (bleaching + tension mercerization + reactive dyeing) and (bleaching + non-mercerization + reactive dyeing) respectively. Open-end spun yarns have a higher K/S compared to the compact and ring spun yarns with the lowest count yarn and twist level. The strength percentages are higher for compact, then ring and finally open-end spun yarns respectively with tension mercerization. There is no noticeable difference in the elongation% for all of the treatment processes. The authors have used quality engineering reproducibility and repeatability (R&R) tools to guarantee the repeatability and reproducibility of the results in this research paper.

Details

Research Journal of Textile and Apparel, vol. 19 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 23 January 2009

Nilgün Özdıˆl, Arzu Marmarali and Nida Oğlakcioğlu

The purpose of this paper is to explain the yarn parameters and some finishing process that can affect the abrasion resistance of socks in detail.

1158

Abstract

Purpose

The purpose of this paper is to explain the yarn parameters and some finishing process that can affect the abrasion resistance of socks in detail.

Design/methodology/approach

The abrasion tests were made on socks produced from the most popular fibers (cotton, wool, PAC, PES, PA, and blends of these) by the Modificated Martindale method. The effects of fiber type, yarn count (for single and ply yarn), combing process, softness process with silicone and mercerization process to the abrasion resistance were investigated.

Findings

It was found that the use of coarse yarns, addition of polyester, polyamide fibers or elastane filaments to the structure and application of the mercerization process increase the abrasion resistance of the socks. However, the silicone softeners decrease this value. The resistance of wool socks is higher than acrylics.

Originality/value

Socks, which are a necessary item of clothing, need to be comfortable, affordable and retain their quality throughout their life. The most significant problem is abrasion which can greatly reduce the material's life. To determine the parameters affecting the sock abrasion will be useful both for producer and for consumer.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 July 2006

Arunangshu Mukhopadhyay, Subrata Ghosh and Somes Bhaumik

This paper seeks to report an experimental investigation on the tearing and tensile strength behaviour of military khaki fabrics from grey to finished process.

1150

Abstract

Purpose

This paper seeks to report an experimental investigation on the tearing and tensile strength behaviour of military khaki fabrics from grey to finished process.

Design/methodology/approach

Uses three different types of military fabric (3 up 1 down twill), differing in type of constituent yarns (ring/rotor) in order to test their tearing and testing strength behaviour.

Findings

Tearing strength of fabric is found to be very much susceptible to change due to the process variation, while fabric tensile strength is relatively less sensitive. Ring spun yarn fabric shows higher tearing strength compared with rotor spun yarn fabric. However, the difference in their tearing strength reduces substantially as the process approaches towards the finished state. On the other hand, rotor spun yarn fabric exhibits higher tensile strength along the warp. Tearing strength along bias direction is in between warp and weft wise tearing strength; whereas tensile strength is lowest while tested along the bias direction. During the grey to finished process, tear strength falls at bleaching and dyeing, and particularly drops in strength is being more at the dyeing stage.

Originality/value

This study has investigated the tearing and tensile strength behaviour of military khaki fabrics from grey to finished state, developing understanding of the impact of different processes on the tearing strength, so that fabric of the required tear strength can be developed with process modification.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3540

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2003

George K. Stylios

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1197

Abstract

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 15 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2020

Priyanka Gupta, Manas Datta Roy and Subrata Ghosh

This paper aims to assess the relationships amongst the tearing strength of fabrics after each chemical processing stage and after finishing of plain-woven cotton fabric. An…

Abstract

Purpose

This paper aims to assess the relationships amongst the tearing strength of fabrics after each chemical processing stage and after finishing of plain-woven cotton fabric. An effort has been made to study the effect of different finishing chemicals (tear improver) and their different concentrations on the high-density fabric tear strength and its sub-component with respect to the co-efficient of friction value of yarns for all the fabric samples. It also aims to establish a statistical model for prediction of tear strength with identified parameters as yarn–yarn friction co-efficient, yarn pullout force and single yarn strength.

Design/methodology/approach

In case of woven fabrics, it cannot be assumed that only yarn friction plays the role in deciding fabric-tearing strength. Whether the static or kinetic frictions need to be considered or the linear or capstan frictions have to be analyzed, to incorporate the results of friction analysis in the tearing behavior, need to be assessed. In the present work through a fabrication of yarn–yarn friction measurement, under a synchronized slow speed as that of actual fabric tearing (50 mm/min), has been carried out. After each wet processing stage, surface characteristics of yarns have been changed. Surface of yarns becomes smoother after finishing and rough after dyeing, which affects the co-efficient of friction of yarns, accordingly.

Findings

After each wet processing stage, the surface characteristics of yarns are changed. Surface structure of yarns becomes smooth after finishing and rough after dyeing, which affects the co-efficient of friction of yarns. For all the fabrics, the weft-way tearing strength is always higher than warp-way tearing strength. It is also observed that yarn pullout force is not the only responsible factor for tearing strength of such fabric. It is because of the combined action of yarn–yarn friction, yarn pullout force and single yarn strength for a given structure.

Research limitations/implications

A more extensive investigation with respect to concentration as well as further variety of chemicals requires to be identified for the optimum concentration level for each chemical. A mathematical model based on the three parameters as yarn–yarn co-efficient of friction, yarn pullout force and yarn strength for all woven fabric structure to achieve optimum strength level has been established which could be further extended for each fabric structures.

Practical implications

The problem has been identified from the day-to-day exercise of the commercial textile industry. The whole of the sample preparations have been done in the industry by using commercial machines under standard industrial conditions. The findings have been discussed and suitably introduced in the industry.

Originality/value

The whole of this paper has been unique in idea origination, sample preparation and execution of tests. The findings are very important for the researchers as well as for textile industry.

Details

Research Journal of Textile and Apparel, vol. 24 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1096

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1549

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 November 2011

George K. Stylios

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 51