Search results

1 – 10 of over 3000
Article
Publication date: 10 August 2020

Ruomeng Wu, Meng Liu and Frank Kardes

This paper aims to investigate the effect of chronological age on the likelihood to choose a service provider with technological machines versus humans in the context of services.

Abstract

Purpose

This paper aims to investigate the effect of chronological age on the likelihood to choose a service provider with technological machines versus humans in the context of services.

Design/methodology/approach

Two experimental studies were used to collect data. In both experiments, scripts were devised to depict a food ordering situation. The studies, each of which represents two between-subject conditions, were presented to a total of 312 participants.

Findings

The results of studies show that as age increases, consumers show a higher visit likelihood with human servers as compared to self-ordering machines. This effect emerges because as age increases, people find it more comfortable and convenient to order from human servers. Nevertheless, when a self-ordering machine is the only option, older and younger people find it equally comfortable and convenient.

Research limitations/implications

This research indicates that as age increases, consumers tend to choose human servers. However, age does not impact willingness to use technology when human service is not available. A limitation of our research is that we look at food ordering contexts only. Another limitation is that most participants were between 18 and 60 years of age.

Practical implications

With a better understanding of the effect of age on preference for service types and the reason behind it, this research helps implement and manage service technologies that may elicit favorable judgments and decisions from consumers.

Originality/value

It demonstrates how, when and why age affects the intention to visit service providers that adopt self-service technologies. This research suggests that as age increases, consumers like human service better, but they do not resist self-service technology.

Details

Journal of Services Marketing, vol. 35 no. 1
Type: Research Article
ISSN: 0887-6045

Keywords

Article
Publication date: 12 March 2018

Che-Chih Tsao, Ho-Hsin Chang, Meng-Hao Liu, Ho-Chia Chen, Yun-Tang Hsu, Pei-Ying Lin, Yih-Lin Chou, Ying-Chieh Chao, Yun-Hui Shen, Cheng-Yi Huang, Kai-Chiang Chan and Yi-Hung Chen

The purpose of this paper is to propose and demonstrate a new additive manufacturing approach that breaks the layer-based point scanning limitations to increase fabrication speed…

389

Abstract

Purpose

The purpose of this paper is to propose and demonstrate a new additive manufacturing approach that breaks the layer-based point scanning limitations to increase fabrication speed, obtain better surface finish, achieve material flexibility and reduce equipment costs.

Design/methodology/approach

The freeform additive manufacturing approach conceptually views a 3D article as an assembly of freeform elements distributed spatially following a flexible 3D assembly structure, which conforms to the surface of the article and physically builds the article by sequentially forming the freeform elements by a vari-directional vari-dimensional capable material deposition mechanism. Vari-directional building along tangential directions of part surface gives surface smoothness. Vari-dimensional deposition maximizes material output to increase build rate wherever allowed and minimizes deposition sizes for resolution whenever needed.

Findings

Process steps based on geometric and data processing considerations were described. Dispensing and forming of basic vari-directional and vari-dimensional freeform elements and basic operations of joining them were developed using thermoplastics. Forming of 3D articles at build rates of 2-5 times the fused deposition modeling (FDM) rate was demonstrated and improvement over ten times was shown to be feasible. FDM compatible operations using 0.7 mm wire depositions from a variable exit-dispensing unit were demonstrated. Preliminary tests of a surface finishing process showed a result of 0.8-1.9 um Ra. Initial results of dispensing wax, tin alloy and steel were also shown.

Originality/value

This is the first time that both vari-directional and vari-dimensional material depositions are combined in a new freeform building method, which has potential impact on the FDM and other additive manufacturing methods.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 August 2018

Long Meng, Meng Liu, Lingjiu Zhou, Wanpeng Wang, Cuilin Liao, Lice Zhao and Tieyou Li

Cavitation inside pumps affects not only the steady state fluid flow, but also the unsteady or transient characteristic of the flow. However, cavitation inside pumps under…

Abstract

Purpose

Cavitation inside pumps affects not only the steady state fluid flow, but also the unsteady or transient characteristic of the flow. However, cavitation inside pumps under transient processes is difficult to predict when the influence of the pipelines system is considered. In this paper we present a simulation method applied to a centrifugal pump and its related pipeline to analyze the induced unsteady cavitation phenomenon during the startup process.

Design/methodology/approach

In order to effectively predict transient processes of a pump and its pipeline system, the simulation method uses a coupled 1D and 3D scheme, which reduces the simulation cost. The simulation of the startup process of a centrifugal pump in a closed-loop pipeline system with and without cavitation has been performed to verify the proposed method.

Findings

The evolution of the pressure and flow rate obtained with the simulation method agrees well with the experimental results. It is found that the mass flow rate at the pump inlet and outlet is highly related to the cavitation vapor volume and that the pressure at the outlet of the impeller is greatly influenced by the discharge.

Originality/value

The 1D-3D coupling simulation method used in this paper is proven to be highly accurate, efficient and can be used to solve transient processes combined with cavitation or other complex phenomena.

Details

Engineering Computations, vol. 35 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2017

Lingjiu Zhou, Meng Liu, Zhengwei Wang, Demin Liu and Yongzhi Zhao

This study analyzes the blade channel vortices inside Francis runner with a particular focus on the identification of different types of vortices and their causes.

Abstract

Purpose

This study analyzes the blade channel vortices inside Francis runner with a particular focus on the identification of different types of vortices and their causes.

Design/methodology/approach

A single-flow passage of the Francis runner with refined mesh and periodic boundary conditions was used for the numerical simulation to reduce the computational resource. The steady-state Reynolds-averaged Navier–Stokes equations closed with the k-ω shear–stress transport (SST) turbulence model were solved by ANSYS CFX to determine the flow field. The vortices were identified by the second largest eigenvalue of velocity.

Findings

Four types of vortices were identified inside the runner. Three types were related to the inlet flow. The last one (Type 4) was caused by the reversed flow near the runner crown and had the lowest pressure inside the core near the runner outlet. Thus, in the blade channel vortex inception line, Type 4 vortex would appear earlier than the other three ones. Besides, the Type 4 vortex emerged from the crown and shed toward the blade-trailing edge. And its location moved from near the crown down to near the band when the unit speed increased or unit discharge decreased.

Research limitations/implications

Although the refined mesh was used and the main vortices in the Francis runner were well predicted, the current mesh is not enough to accurately predict the lowest pressure in the channel vortex core.

Practical/implications

This knowledge is instructive in the runner blade design and troubleshooting related to the channel vortex.

Originality/value

This study gives an overview of the main observed blade channel vortices and their causes, and points out the important role the reversed flow plays in the formation of blade channel vortices. This knowledge is instructive in the runner blade design and troubleshooting related to blade channel vortices.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 September 2021

Liu Meng, Zhang Chonghui, Yu Chenhong and Ye Yujing

The purpose of this article is to conduct a main path analysis of 627 articles on the theme of Pythagorean fuzzy sets (PFSs) in the Web of Science (WoS) from 2013 to 2020, to…

Abstract

Purpose

The purpose of this article is to conduct a main path analysis of 627 articles on the theme of Pythagorean fuzzy sets (PFSs) in the Web of Science (WoS) from 2013 to 2020, to provide a conclusive and comprehensive analysis for researchers in this field, and to provide a study on preliminary understanding of PFSs.

Design/methodology/approach

The research topic of Pythagorean fuzzy fields, through keyword extraction and describing the changes in characteristic themes over the past eight years, are firstly examined. Main path analysis, including local and global main paths and key route paths, is then used to reveal the most influential relationships between papers and to explore the trajectory and structure of knowledge transmission.

Findings

The application of Pythagorean fuzzy theory to the field of decision-making has been popular, and combinations of the traditional Pythagorean fuzzy decision-making method with other fuzzy sets have attracted widespread attention in recent years. In addition, over the past eight years, research interest has shifted to different types of PFSs, such as interval-valued PFSs.

Research limitations/implications

This paper implicates to investigate the growth in certain trends in the literature and to explore the main paths of knowledge dissemination in the domain of PFSs in recent years.

Originality/value

This paper aims to identify the topics in which researchers are currently interested, to help scholars to keep abreast of the latest research on PFSs.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 5 July 2022

Debiao Meng, Shiyuan Yang, Chao He, Hongtao Wang, Zhiyuan Lv, Yipeng Guo and Peng Nie

As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex…

Abstract

Purpose

As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex engineering systems, not only because of the accurate evaluation of the impact of uncertain factors but also the relatively good balance between economy and safety of performance. However, with the increasing complexity of engineering technology, the proposed RBMDO method gradually cannot effectively solve the higher nonlinear coupled multidisciplinary uncertainty design optimization problems, which limits the engineering application of RBMDO. Many valuable works have been done in the RBMDO field in recent decades to tackle the above challenges. This study is to review these studies systematically, highlight the research opportunities and challenges, and attempt to guide future research efforts.

Design/methodology/approach

This study presents a comprehensive review of the RBMDO theory, mainly including the reliability analysis methods of different uncertainties and the decoupling strategies of RBMDO.

Findings

First, the multidisciplinary design optimization (MDO) preliminaries are given. The basic MDO concepts and the corresponding mathematical formulas are illustrated. Then, the procedures of three RBMDO methods with different reliability analysis strategies are introduced in detail. These RBMDO methods were proposed for the design optimization problems under different uncertainty types. Furtherly, an optimization problem for a certain operating condition of a turbine runner blade is introduced to illustrate the engineering application of the above method. Finally, three aspects of future challenges for RBMDO, namely, time-varying uncertainty analysis; high-precision surrogate models, and verification, validation and accreditation (VVA) for the model, are discussed followed by the conclusion.

Originality/value

The scope of this study is to introduce the RBMDO theory systematically. Three commonly used RBMDO-SORA methods are reviewed comprehensively, including the methods' general procedures and mathematical models.

Article
Publication date: 7 June 2022

Zhen Li, Yutong Jin, Wenjing Li, Qingfeng Meng and Xin Hu

The impacts of COVID-19 on construction projects have attracted much attention in the construction management research community. Nevertheless, a systematic review of these…

1982

Abstract

Purpose

The impacts of COVID-19 on construction projects have attracted much attention in the construction management research community. Nevertheless, a systematic review of these studies is still lacking. The purpose of this paper is to systematically analyze the impacts of COVID-19 on the different stages of a project life-cycle, and comprehensively sort out the epidemic response measures adopted by project participants. In addition, the study also attempts to explore the challenges and opportunities faced by project management practitioners under the context of COVID-19.

Design/methodology/approach

This study comprehensively demonstrates the systematic review process of COVID-19 related research in the construction industry, systematically summarizes the research status of the impact of COVID-19 on construction projects, and defines the strategies to deal with COVID-19 in project management; and through the visualization research, determines the current key research topics and future research trends.

Findings

This study identifies 11 construction activities in the project management life cycle that are affected by COVID-19 and finds that the COVID-19 epidemic has the greatest impact on construction workers, construction standards, construction contracts and construction performance. The study further summarizes the six main epidemic countermeasures and mitigation measures taken within the construction industry following the arrival of the epidemic. In addition, the results of this study identify opportunities and future trends in intelligent construction technology, rapid manufacturing engineering and project management in the construction industry in the post-epidemic era through literature results, which also provide ideas for related research.

Practical implications

COVID-19 has brought severe challenges to society. It is of great significance for the future sustainable development of the construction industry to identify the impact of COVID-19 on all phases of the project and to promote the development of coping strategies by project stakeholders.

Originality/value

First of all, there is little study comprehensively reviewing the impacts of COVID-19 on the different stages of construction projects and the strategies to deal with the negative impacts. In addition, from a life cycle perspective, the used articles in this study were grouped into different categories based on project stages. This promotes an integrated and comprehensive understanding of historical studies. Moreover, on the basis of a comprehensive review, this paper puts forward future research directions to promote the sustainable development of the construction sector.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 August 2023

Jianhui Liu, Ziyang Zhang, Longxiang Zhu, Jie Wang and Yingbao He

Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of…

Abstract

Purpose

Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of fatigue data and reduces the accuracy of fatigue life prediction. Therefore, this study aims to expand the available fatigue data and verify its reliability, enabling the achievement of life prediction analysis at different stress levels.

Design/methodology/approach

First, the principle of fatigue life probability percentiles consistency and the perturbation optimization technique is used to realize the equivalent conversion of small samples fatigue life test data at different stress levels. Meanwhile, checking failure model by fitting the goodness of fit test and proposing a Monte Carlo method based on the data distribution characteristics and a numerical simulation strategy of directional sampling is used to extend equivalent data. Furthermore, the relationship between effective stress and characteristic life is analyzed using a combination of the Weibull distribution and the Stromeyer equation. An iterative sequence is established to obtain predicted life.

Findings

The TC4–DT titanium alloy is selected to assess the accuracy and reliability of the proposed method and the results show that predicted life obtained with the proposed method is within the double dispersion band, indicating high accuracy.

Originality/value

The purpose of this study is to provide a reference for the expansion of small sample fatigue test data, verification of data reliability and prediction of fatigue life data. In addition, the proposed method provides a theoretical basis for engineering applications.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 May 2020

Jianfeng Li, Wenpei Fan, Mingjie Dong and Xi Rong

The purpose of this paper is to implement a passive compliance training strategy for our newly designed 2-UPS/RRR parallel ankle rehabilitation robot (PARR) to enhance its…

Abstract

Purpose

The purpose of this paper is to implement a passive compliance training strategy for our newly designed 2-UPS/RRR parallel ankle rehabilitation robot (PARR) to enhance its rehabilitation training safety.

Design/methodology/approach

First, a kinematic analysis of the PARR is introduced, and the mechanism ensures that the rotation centre of the ankle joint complex (AJC) coincides with robot’s rotation centre. Then, a passive compliance training strategy based on admittance control is described in detail and is implemented on our PARR.

Findings

Experiments involving healthy subjects were conducted, and the performance of trajectory tracking was quantitatively evaluated, with the results showing excellent compliance and trajectory tracking accuracy, which can ensure that a secondary injury to the AJC during passive rehabilitation training is avoided. The influence of different admittance parameters was also simulated and analysed, which can contribute to the development of adaptive parameter adjustment research.

Originality/value

The paper can be used to improve the effectiveness of ankle rehabilitation, to alleviate manual therapy problems in terms of labour intensiveness, precision and subjectivity and to ensure safety and comfort during rehabilitation sessions.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 September 2017

Fang Liu, Jiacheng Zhou and Nu Yan

The purpose of this paper is to study the drop reliability of ball-grid array (BGA) solder joints affected by thermal cycling.

Abstract

Purpose

The purpose of this paper is to study the drop reliability of ball-grid array (BGA) solder joints affected by thermal cycling.

Design/methodology/approach

The drop test was made with the two kinds of chip samples with the thermal cycling or not. Then, the dyeing process was taken by these samples. Finally, through observing the metallographic analysis results, the conclusions could be found.

Findings

It is observed that the solder joint cracks which were only subjected to drop loads without thermal cycling appeared near the BGA package pads. The solder joint cracks which were subjected to drop loads with thermal cycling appear near the printed circuit board pads.

Originality/value

This paper obtains the solder joint cracks picture with drop test under the thermal cycling.

Details

Soldering & Surface Mount Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 3000