Search results

1 – 10 of 55
Article
Publication date: 12 October 2023

Zhuyue Li and Chunxiao Zhang

Supply chain risk management can effectively reduce the loss of retailers. In this regard, retailers need to consider the competition risks of competitors in addition to the…

Abstract

Purpose

Supply chain risk management can effectively reduce the loss of retailers. In this regard, retailers need to consider the competition risks of competitors in addition to the disruption risks. This paper designs a resilient retail supply chain network for perishable foods under the dynamic competition to maximize retailer's profits.

Design/methodology/approach

A two-stage mixed-integer non-linear model is presented for designing the supply chain network. In the first stage, an equilibrium model that considers the characteristics of perishable foods is developed. In the second stage, a mixed integer non-linear programming model is presented to deal with the strategic decisions. Finally, an efficient memetic algorithm is designed to deal with large-scale problems.

Findings

The optimal the selection of suppliers, distribution centers and the order allocation are found among the supply chain entities. Considering the perishability of agri-food products, the equilibrium retail price and selling quantity are determined. Through a numerical example, the optimal inventory period under different maximum shelf life and the impact of three resilient strategies on retailer's profit, selling price and selling quantity are analyzed.

Research limitations/implications

As for future research, the research can be extended in a number of directions. First, this paper studies the retail supply chain network design problem under competition among retailers. It can be an interesting direction to consider retailers competing with suppliers. Second, the authors can try to linearize the non-linear model and solve the large-scale integer programming problem by exact algorithm. Finally, the freshness of perishable foods gradually declines linearly to zero as the maximum shelf life approaches, and it would be a meaningful attempt to consider the freshness of perishable foods declines exponentially.

Originality/value

This paper innovatively designs the resilient supply chain network for perishable foods under dynamic competition. The retailer's dynamic competition and resilient strategies are considered simultaneously when designing supply chain network for perishable foods. In addition, this paper gives insights into how to obtain the optimal inventory period and compare the retailer's resilient strategies.

Article
Publication date: 25 January 2022

Seyed Mohammad Hassan Hosseini

This paper aims to address a distributed assembly permutation flow-shop scheduling problem (DAPFSP) considering budget constraints and factory eligibility. The first stage of the…

Abstract

Purpose

This paper aims to address a distributed assembly permutation flow-shop scheduling problem (DAPFSP) considering budget constraints and factory eligibility. The first stage of the considered production system is composed of several non-identical factories with different technology levels and so the factories' performance is different in terms of processing time and cost. The second stage is an assembly stage wherein there are some parallel work stations to assemble the ready parts into the products. The objective function is to minimize the maximum completion time of products (makespan).

Design/methodology/approach

First, the problem is formulated as mixed-integer linear programing (MIP) model. In view of the nondeterministic polynomial (NP)-hard nature, three approximate algorithms are adopted based on variable neighborhood search (VNS) and the Johnsons' rule to solve the problem on the practical scales. The proposed algorithms are applied to solve some test instances in different sizes.

Findings

Comparison result to mathematical model validates the performance accuracy and efficiency of three proposed methods. In addition, the result demonstrated that the proposed two-level self-adaptive variable neighborhood search (TLSAVNS) algorithm outperforms the other two proposed methods. Moreover, the proposed model highlighted the effects of budget constraints and factory eligibility on the makespan. Supplementary analysis was presented by adjusting different amounts of the budget for controlling the makespan and total expected costs. The proposed solution approach can provide proper alternatives for managers to make a trade-off in different various situations.

Originality/value

The problem of distributed assembly permutation flow-shop scheduling is traditionally studied considering identical factories. However, processing factories as an important element in the supply chain use different technology levels in the real world. The current paper is the first study that investigates that problem under non-identical factories condition. In addition, the impact of different technology levels is investigated in terms of operational costs, quality levels and processing times.

Details

Kybernetes, vol. 52 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 January 2024

Masoud Parsi, Vahid Baradaran and Amir Hossein Hosseinian

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of…

Abstract

Purpose

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of offshore projects and their environmental-degrading effects have been embraced as well. The durations of activities are uncertain in this model. The developed formulation is tri-objective that seeks to minimize the expected time, total cost and CO2 emission of all projects.

Design/methodology/approach

A new version of the multiobjective multiagent optimization (MOMAO) algorithm has been proposed to solve the amalgamated model. To empower the MOMAO, various procedures of this algorithm have been modified based on the multiattribute utility theory (MAUT) technique. Along with the MOMAO, this study has employed four other meta-heuristic methodologies to solve the model as well.

Findings

The outputs of the MOMAO have been put to test against four other optimizers in terms of convergence, diversity, uniformity and computation times. The results of the Mean Ideal Distance (MID) metric have revealed that the MOMAO has strongly prevailed its rival optimizers. In terms of diversity of the acquired solutions, the MOMAO has ranked the first among all employed optimizers since this algorithm has offered the best solutions in 56.66 and 63.33% of the test problems regarding the diversification metric and hyper-volume metrics. Regarding the uniformity of results, which is measured through the spacing metric (SP), the MOMAO has presented the best SP values in more than 96% of the test problems. The MOMAO has needed more computation times in comparison to its rivals.

Practical implications

A real case study comprising two concurrent offshore projects has been offered. The proposed formulation and the MOMAO have been implemented for this case study, and their effectiveness has been appraised.

Originality/value

Very few studies have focused on presenting an integrated formulation for the stochastic multiproject scheduling and material ordering problems. The model embraces some of the characteristics of the offshore projects which have not been adequately studied in the literature. Limited capacities of the offshore platforms and cargo vessels have been embedded in the proposed model. The offshore platforms have spatial limitations in storing the required materials. The vessels are also capacitated and they also have limited shipment capacities. Some of the required materials need to be transported from the base to the offshore platform via a fleet of cargo vessels. The workforces and equipment can become idle on the offshore platform due to material shortage. Various offshore-related costs have been integrated as a minimization objective function in the model. The cargo vessels release CO2 detrimental emissions to the environment which are sought to be minimized in the developed formulation. To the best of the authors' knowledge, the MOMAO has not been sufficiently employed as a solution methodology for the stochastic multiproject scheduling and material ordering problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 April 2024

Ting Zhou, Yingjie Wei, Jian Niu and Yuxin Jie

Metaheuristic algorithms based on biology, evolutionary theory and physical principles, have been widely developed for complex global optimization. This paper aims to present a…

Abstract

Purpose

Metaheuristic algorithms based on biology, evolutionary theory and physical principles, have been widely developed for complex global optimization. This paper aims to present a new hybrid optimization algorithm that combines the characteristics of biogeography-based optimization (BBO), invasive weed optimization (IWO) and genetic algorithms (GAs).

Design/methodology/approach

The significant difference between the new algorithm and original optimizers is a periodic selection scheme for offspring. The selection criterion is a function of cyclic discharge and the fitness of populations. It differs from traditional optimization methods where the elite always gains advantages. With this method, fitter populations may still be rejected, while poorer ones might be likely retained. The selection scheme is applied to help escape from local optima and maintain solution diversity.

Findings

The efficiency of the proposed method is tested on 13 high-dimensional, nonlinear benchmark functions and a homogenous slope stability problem. The results of the benchmark function show that the new method performs well in terms of accuracy and solution diversity. The algorithm converges with a magnitude of 10-4, compared to 102 in BBO and 10-2 in IWO. In the slope stability problem, the safety factor acquired by the analogy of slope erosion (ASE) is closer to the recommended value.

Originality/value

This paper introduces a periodic selection strategy and constructs a hybrid optimizer, which enhances the global exploration capacity of metaheuristic algorithms.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2022

Oğuzhan Ahmet Arık

This paper aims to provide a promising memetic algorithm (MA) for an unrelated parallel machine scheduling problem with grey processing times by using a simple dispatching rule in…

Abstract

Purpose

This paper aims to provide a promising memetic algorithm (MA) for an unrelated parallel machine scheduling problem with grey processing times by using a simple dispatching rule in the local search phase of the proposed MA.

Design/methodology/approach

This paper proposes a MA for an unrelated parallel machine scheduling problem where the objective is to minimize the sum of weighted completion times of jobs with uncertain processing times. In the optimal schedule of the problem’s single machine version with deterministic processing time, the machine has a sequence where jobs are ordered in their increasing order of weighted processing times. The author adapts this property to some of their local search mechanisms that are required to assure the local optimality of the solution generated by the proposed MA. To show the efficiency of the proposed algorithm, this study uses other local search methods in the MA within this experiment. The uncertainty of processing times is expressed with grey numbers.

Findings

Experimental study shows that the MA with the swap-based local search and the weighted shortest processing time (WSPT) dispatching rule outperforms other MA alternatives with swap-based and insertion-based local searches without that dispatching rule.

Originality/value

A promising and effective MA with the WSPT dispatching rule is designed and applied to unrelated parallel machine scheduling problems where the objective is to minimize the sum of the weighted completion times of jobs with grey processing time.

Details

Journal of Modelling in Management, vol. 18 no. 5
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 9 April 2024

Alexander O. Smith, Jeff Hemsley and Zhasmina Y. Tacheva

Our purpose is to reconnect memetics to information, a persistent and unclear association. Information can contribute across a span of memetic research. Its obscurity restricts…

Abstract

Purpose

Our purpose is to reconnect memetics to information, a persistent and unclear association. Information can contribute across a span of memetic research. Its obscurity restricts conversations about “information flow,” the connections between “form” and “content,” as well as many other topics. As information is involved in cultural activity, its clarification could focus memetic theories and applications.

Design/methodology/approach

Our design captures theoretical nuance in memetics by considering a long standing conceptual issue in memetics: information. A systematic review of memetics is provided by making use of the term information across literature. We additionally provide a citation analysis and close readings of what “information” means within the corpus.

Findings

Our initial corpus is narrowed to 128 pivotal memetic publications. From these publications, we provide a citation analysis of memetic studies. Theoretical directions of memetics in the informational context are outlined and developed. We outline two main discussion spaces, survey theoretical interests and describe where and when information is important to memetic discussion. We also find that there are continuities in goals which connect Dawkins’s meme with internet meme studies.

Originality/value

To our knowledge, this is the broadest, most inclusive review of memetics conducted, making use of a unique approach to studying information-oriented discourse across a corpus. In doing so, we provide information researchers areas in which they might contribute theoretical clarity in diverse memetic approaches. Additionally, we borrow the notion of “conceptual troublemakers” to contribute a corpus collection strategy which might be valuable for future literature reviews with conceptual difficulties arising from interdisciplinary study.

Details

Journal of Documentation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0022-0418

Keywords

Article
Publication date: 7 December 2021

Jiuhong Yu, Mengfei Wang, Yu J.H. and Seyedeh Maryam Arefzadeh

This paper aims to offer a hybrid genetic algorithm and the ant colony optimization (GA-ACO) algorithm for task mapping and resource management. The paper aims to reduce the…

Abstract

Purpose

This paper aims to offer a hybrid genetic algorithm and the ant colony optimization (GA-ACO) algorithm for task mapping and resource management. The paper aims to reduce the makespan and total response time in fog computing- medical cyber-physical system (FC-MCPS).

Design/methodology/approach

Swift progress in today’s medical technologies has resulted in a new kind of health-care tool and therapy techniques like the MCPS. The MCPS is a smart and reliable mechanism of entrenched clinical equipment applied to check and manage the patients’ physiological condition. However, the extensive-delay connections among cloud data centers and medical devices are so problematic. FC has been introduced to handle these problems. It includes a group of near-user edge tools named fog points that are collaborating until executing the processing tasks, such as running applications, reducing the utilization of a momentous bulk of data and distributing the messages. Task mapping is a challenging problem for managing fog-based MCPS. As mapping is an non-deterministic pol ynomial-time-hard optimization issue, this paper has proposed a procedure depending on the hybrid GA-ACO to solve this problem in FC-MCPS. ACO and GA, that is applied in their standard formulation and combined as hybrid meta-heuristics to solve the problem. As such ACO-GA is a hybrid meta-heuristic using ACO as the main approach and GA as the local search. GA-ACO is a memetic algorithm using GA as the main approach and ACO as local search.

Findings

MATLAB is used to simulate the proposed method and compare it to the ACO and MACO algorithms. The experimental results have validated the improvement in makespan, which makes the method a suitable one for use in medical and real-time systems.

Research limitations/implications

The proposed method can achieve task mapping in FC-MCPS by attaining high efficiency, which is very significant in practice.

Practical implications

The proposed approach can achieve the goal of task scheduling in FC-MCPS by attaining the highest total computational efficiency, which is very significant in practice.

Originality/value

This research proposes a GA-ACO algorithm to solve the task mapping in FC-MCPS. It is the most significant originality of the paper.

Details

Circuit World, vol. 49 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 17 July 2023

Youping Lin

The interval multi-objective optimization problems (IMOPs) are universal and vital uncertain optimization problems. In this study, an interval multi-objective grey wolf…

Abstract

Purpose

The interval multi-objective optimization problems (IMOPs) are universal and vital uncertain optimization problems. In this study, an interval multi-objective grey wolf optimization algorithm (GWO) based on fuzzy system is proposed to solve IMOPs effectively.

Design/methodology/approach

First, the classical genetic operators are embedded into the interval multi-objective GWO as local search strategies, which effectively balanced the global search ability and local development ability. Second, by constructing a fuzzy system, an effective local search activation mechanism is proposed to save computing resources as much as possible while ensuring the performance of the algorithm. The fuzzy system takes hypervolume, imprecision and number of iterations as inputs and outputs the activation index, local population size and maximum number of iterations. Then, the fuzzy inference rules are defined. It uses the activation index to determine whether to activate the local search process and sets the population size and the maximum number of iterations in the process.

Findings

The experimental results show that the proposed algorithm achieves optimal hypervolume results on 9 of the 10 benchmark test problems. The imprecision achieved on 8 test problems is significantly better than other algorithms. This means that the proposed algorithm has better performance than the commonly used interval multi-objective evolutionary algorithms. Moreover, through experiments show that the local search activation mechanism based on fuzzy system proposed in this study can effectively ensure that the local search is activated reasonably in the whole algorithm process, and reasonably allocate computing resources by adaptively setting the population size and maximum number of iterations in the local search process.

Originality/value

This study proposes an Interval multi-objective GWO, which could effectively balance the global search ability and local development ability. Then an effective local search activation mechanism is developed by using fuzzy inference system. It closely combines global optimization with local search, which improves the performance of the algorithm and saves computing resources.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 November 2023

Iman Rastgar, Javad Rezaeian, Iraj Mahdavi and Parviz Fattahi

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize…

Abstract

Purpose

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize production and scheduling decisions.

Design/methodology/approach

This study presents a multi-objective optimization framework to make production planning, scheduling and maintenance decisions. An epsilon-constraint method is used to solve small instances of the model, while new hybrid optimization algorithms, including multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm, multi-objective harmony search and improved multi-objective harmony search (IMOHS) are developed to address the high complexity of large-scale problems.

Findings

The computational results demonstrate that the metaheuristic algorithms are effective in obtaining economic solutions within a reasonable computational time. In particular, the results show that the IMOHS algorithm is able to provide optimal Pareto solutions for the proposed model compared to the other three algorithms.

Originality/value

This study presents a new mathematical model that simultaneously determines green production planning and scheduling decisions by minimizing the sum of the total cost, makespan, lateness and energy consumption criteria. Integrating production and scheduling of a shop floor is critical for achieving optimal operational performance in production planning. To the best of the authors' knowledge, the integration of production planning and maintenance has not been adequately addressed.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 15 March 2022

Shaoyu Zeng, Yinghui Wu and Yang Yu

The paper formulates a bi-objective mixed-integer nonlinear programming model, aimed at minimizing the total labor hours and the workload unfairness for the multi-skilled worker…

Abstract

Purpose

The paper formulates a bi-objective mixed-integer nonlinear programming model, aimed at minimizing the total labor hours and the workload unfairness for the multi-skilled worker assignment problem in Seru production system (SPS).

Design/methodology/approach

Three approaches, namely epsilon-constraint method, non-dominated sorting genetic algorithm 2 (NSGA-II) and improved strength Pareto evolutionary algorithm (SPEA2), are designed for solving the problem.

Findings

Numerous experiments are performed to assess the applicability of the proposed model and evaluate the performance of algorithms. The merged Pareto-fronts obtained from both NSGA-II and SPEA2 were proposed as final solutions to provide useful information for decision-makers.

Practical implications

SPS has the flexibility to respond to the changing demand for small amount production of multiple varieties products. Assigning cross-trained workers to obtain flexibility has emerged as a major concern for the implementation of SPS. Most enterprises focus solely on measures of production efficiency, such as minimizing the total throughput time. Solutions based on optimizing efficiency measures alone can be unacceptable by workers who have high proficiency levels when they are achieved at the expense of the workers taking more workload. Therefore, study the tradeoff between production efficiency and fairness in the multi-skilled worker assignment problem is very important for SPS.

Originality/value

The study investigates a new mixed-integer programming model to optimize worker-to-seru assignment, batch-to-seru assignment and task-to-worker assignment in SPS. In order to solve the proposed problem, three problem-specific solution approaches are proposed.

Details

Kybernetes, vol. 52 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 55