Search results

1 – 10 of over 7000
Article
Publication date: 27 May 2014

Ervina Efzan Mhd Noor and Amares Singh

The aim of the present study was to gather and review all the important properties of the Sn–Ag–Cu (SAC) solder alloy. The SAC solder alloy has been proposed as the alternative…

Abstract

Purpose

The aim of the present study was to gather and review all the important properties of the Sn–Ag–Cu (SAC) solder alloy. The SAC solder alloy has been proposed as the alternative solder to overcome the environmental concern of lead (Pb) solder. Many researchers have studied the SAC solder alloy and found that the properties such as melting temperature, wettability, microstructure and interfacial, together with mechanical properties, are better for the SAC solder than the tin – lead (SnPb) solders. Meanwhile, addition of various elements and nanoparticles seems to produce enhancement on the prior bulk solder alloy as well. These benefits suggest that the SAC solder alloy could be the next alternative solder for the electronic packaging industry. Although many studies have been conducted for this particular solder alloy, a compilation of all these properties regarding the SAC solder alloy is still not available for a review to say.

Design/methodology/approach

Soldering is identified as the metallurgical joining method in electronic packaging industry which uses filler metal, or well known as the solder, with a melting point < 425°C (Yoon et al., 2009; Ervina and Marini, 2012). The SAC solder has been developed by many methods and even alloying it with some elements to enhance its properties (Law et al., 2006; Tsao et al., 2010; Wang et al., 2002; Gain et al., 2011). The development toward miniaturization, meanwhile, requires much smaller solder joints and fine-pitch interconnections for microelectronic packaging in electronic devices which demand better solder joint reliability of SAC solder Although many studies have been done based on the SAC solder, a review based on the important characteristics and the fundamental factor involving the SAC solder is still not sufficient. Henceforth, this paper resolves in stating all its important properties based on the SAC solder including its alloying of elements and nanoparticles addition for further understanding.

Findings

Various Pb-free solders have been studied and investigated to overcome the health and environmental concern of the SnPb solder. In terms of the melting temperature, the SAC solder seems to possess a high melting temperature of 227°C than the Pb solder SnPb. Here, the melting temperature of this solder falls within the range of the average reflow temperature in the electronic packaging industry and would not really affect the process of connection. A good amendment here is, this melting temperature can actually be reduced by adding some element such as titanium and zinc. The addition of these elements tends to decrease the melting temperature of the SAC solder alloy to about 3°C. Adding nanoparticles, meanwhile, tend to increase the melting temperature slightly; nonetheless, this increment was not seemed to damage other devices due to the very slight increment and no drastic changes in the solidification temperature. Henceforth, this paper reviews all the properties of the Pb-free SAC solder system by how it is developed from overcoming environmental problem to achieving and sustaining as the viable candidate in the electronic packaging industry. The Pb-free SAC solder can be the alternative to all drawbacks that the traditional SnPb solder possesses and also an upcoming new invention for the future needs. Although many studies have been done in this particular solder, not much information is gathered in a review to give better understanding for SAC solder alloy. In that, this paper reviews and gathers the importance of this SAC solder in the electronic packaging industry and provides information for better knowledge.

Originality/value

This paper resolves in stating of all its important properties based on the SAC solder including its alloying of elements and nanoparticles addition for further understanding.

Details

Soldering & Surface Mount Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 September 2013

Ervina Efzan Mhd Noor, Amares Singh and Yap Tze Chuan

Recently nanoparticles reinforced lead free solders are vastly developed in electronics packaging industry. Studies and investigations have been conducted to learn and investigate…

Abstract

Purpose

Recently nanoparticles reinforced lead free solders are vastly developed in electronics packaging industry. Studies and investigations have been conducted to learn and investigate the types, properties, method, availability and importance of nanoparticles in this field.

Design/methodology/approach

Mechanical properties, melting temperature and microstructural conditions are taken into major considerations in any of the preparation on nanoparticles and being reviewed in this paper. Segregation of the types of nanoparticles being added together with their properties is summarized in this paper. High temperature reliability is crucial in providing a good viable solder and hence addition of nanoparticles have been seen to give a positive outcome in this particular property.

Findings

This paper reviews on the beneficial of the various nanoparticles addition in the solder. Briefed explanations and the factors are revealed in this review.

Originality/value

This paper reviews on the beneficial of the various nanoparticles addition in the solder.

Details

Soldering & Surface Mount Technology, vol. 25 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 October 2011

Thomas L. Starr, Timothy J. Gornet and John S. Usher

The purpose of this paper is to measure the effect of process conditions on mechanical properties of laser‐sintered nylon 12 (Duraform®) and to determine the range of conditions…

2315

Abstract

Purpose

The purpose of this paper is to measure the effect of process conditions on mechanical properties of laser‐sintered nylon 12 (Duraform®) and to determine the range of conditions that provide consistent mechanical performance for additive manufacturing.

Design/methodology/approach

Tensile test specimens were fabricated over a range of well‐characterized process conditions including laser power, laser speed, scan spacing, layer thickness, build orientation, and build position. Tensile modulus, yield strength, ultimate tensile strength and elongation‐at‐fracture were measured and related to process parameters.

Findings

Tensile properties are strongly related to the amount of energy deposited during scanning. Strength and modulus approach their maximum values as the energy deposited exceeds the amount needed to fully melt the applied powder. Elongation‐at‐fracture does not reach its maximum until higher energy‐melt ratio. Performance of blends with reused powder matches that of virgin powder when blend composition is adjusted to a standard melt‐flow index. The volumetric energy density and the energy‐melt ratio are useful for correlating mechanical properties with multiple process parameters and material thermal properties.

Originality/value

This work presents the most extensive data to date on mechanical properties of nylon 12 (Duraform®) as they relate to the full range of process parameters. These data show that mechanical performance correlates strongly with the volume energy density. In contrast to the area energy density (a.k.a. Andrews Number), this volumetric parameter includes the effect of varying layer thickness and can be related directly to the melting characteristics of the polymer material. Within the parameter range studied, this relationship allows adjustment of one scan parameter for improved speed or dimensional accuracy while ensuring good strength by an offsetting adjustment of another parameter. Such trade‐offs will be important in future manufacturing applications of the laser sintering process. Understanding the energy‐melt ratio provides insight into the relationship between scan conditions and the physics of powder melting and sintering, and offers a methodology to relate results at other bed temperatures and with other polymer powders.

Details

Rapid Prototyping Journal, vol. 17 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 1999

Paul T. Vianco

An overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability…

1323

Abstract

An overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot‐dipped, plated, and plated‐and‐fused 100Sn and Sn‐Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all‐around best options in terms of solderability protection and wire bondability. Nickel/Pd finishes offer a slightly reduced level of performance in these areas which is most likely due to variable Pd surface conditions. It is necessary to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that include thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non‐Pb bearing solders are discussed.

Details

Circuit World, vol. 25 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 February 2015

Yunfei Du, Chuntian Li, Bin Huang, Ming Tang and Changhua Du

This paper aims to identify a variety of binary system solders by alloying, and relevantly derive multiple system Pb-free solders from the former, attempting to replace the high…

Abstract

Purpose

This paper aims to identify a variety of binary system solders by alloying, and relevantly derive multiple system Pb-free solders from the former, attempting to replace the high temperature Sn-Pb solder.

Design/methodology/approach

The basis of the paper is the synthesis of previous studies. In terms of some binary high temperature solder alloys, such as Au-20Sn, Bi-2.5Ag, Sn-5Sb, Au-12.5Ge, Zn-6Al and Zn-Sn, taking the alloy phase diagram as the starting point, the melting characteristics, microstructure, mechanical properties, wetting ability and reliability of solder joint are analysed and the prospect is consequently indicated.

Findings

Based on the analysis of the six groups of Pb-free solders, the present binary system solder alloys, from the perspective of melting properties, mechanical properties, soldering or reliability of solder joint, rarely meet the comprehensive requirements of replacing the high-temperature Sn-Pb solder. It is assumed to be a solution that multiple-system Pb-free solders derive from a variety of binary system solders by means of alloying. The future development of high temperature Pb-free solder may focus on some factors such as physical properties, mechanical properties, processing, reliability of solder joint, environmental performance and expense.

Originality/value

The paper concentrates on the issue of Pb-free solders at high temperature. From a specific perspective of binary system solders, the presently available Pb-free solders are suggested from the starting point of the alloy phase diagram and the prospect of alternatives of Sn-Pb solders at high temperature are indicated.

Details

Soldering & Surface Mount Technology, vol. 27 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 16 October 2018

Mingkang Zhang, Yongqiang Yang, Changhui Song, Yuchao Bai and Zefeng Xiao

This study aims to focus on the heat treatment influence on the corrosion resistance, adhesion of Streptococcus mutans and mechanical properties of CoCrMo alloys manufactured by…

538

Abstract

Purpose

This study aims to focus on the heat treatment influence on the corrosion resistance, adhesion of Streptococcus mutans and mechanical properties of CoCrMo alloys manufactured by the selective laser melting (SLM).

Design/methodology/approach

CoCrMo alloys were manufactured using the Dimetal-100 machine. X-ray diffraction (XRD), metallographic analysis, scanning electron microscopy (SEM), electrochemical corrosion, Vickers microhardness and tensile tests were used to characterize SLM-produced CoCrMo alloys and compare them with the ones manufactured by casting and with the ASTM F75 standard.

Findings

The electrochemical results showed that SLM900 samples had the best corrosion resistance in artificial saliva. The adhesion results showed least propagation and overall quantity of Streptococcus mutans on the SLM900 sample. The microhardness, tensile and yield strength of As-SLM, SLM900 and SLM1200D samples were measured according to the ASTM F75 standard. The elongation of SLM900 was less than 8 per cent, which does not meet the standard specifications. Analysis of the fracture morphology showed that the fracture mechanisms of As-SLM and SLM1200D belong to the quasi-cleavage fracture type, and the mechanical fracture mechanism of SLM900 can be characterized as brittle fracture.

Originality/value

This paper presents the adhesion properties of Streptococcus mutans on the surface of CoCrMo alloys manufactured by SLM and proposes how to regulate the effect of the heat treatment on the corrosion resistance and mechanical properties of CoCrMo alloys manufactured by SLM.

Details

Rapid Prototyping Journal, vol. 24 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 September 2021

Hyeon-Tae Im, Hyun-Su Kang, Hyeon-Goo Kang, Hyo Kyu Kim, Jun Choi, Ki Beom Park, Taeg Woo Lee, Chan Bin Mo and Hyung-Ki Park

The purpose of this paper is to examine the effect of internal pores on the tensile properties of a Co–Cr–Mo alloy fabricated by selective laser melting (SLM).

Abstract

Purpose

The purpose of this paper is to examine the effect of internal pores on the tensile properties of a Co–Cr–Mo alloy fabricated by selective laser melting (SLM).

Design/methodology/approach

The size and volume fraction of pores were controlled through high temperature annealing (HTA) and hot isostatic pressing (HIP).

Findings

After HTA, the size and fraction of pores decreased compared with the as-built SLM sample, and no pores were observed after HIP. Tensile tests of the HTA and HIP samples showed nearly similar tensile deformation behavior. From the results, the authors found that the size of the internal pores formed in the SLM process had little effect on the tensile properties. The as-built SLM sample had less elongation than the HTA and HIP samples, which would not the effect of porosity, but rather the effect of the residual stress and the retained ε phase after the SLM process.

Originality/value

Although pores are a main factor that influence the mechanical properties, the effect of pores on the tensile properties of Co–Cr–Mo alloys fabricated by SLM has not been studied. Therefore, in this study, the effect of pores on the tensile properties of a Co–Cr–Mo alloy fabricated by SLM was studied.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2019

Muhammad Aamir, Riaz Muhammad, Majid Tolouei-Rad, Khaled Giasin and Vadim V. Silberschmidt

The research on lead-free solder alloys has increased in past decades due to awareness of the environmental impact of lead contents in soldering alloys. This has led to the…

Abstract

Purpose

The research on lead-free solder alloys has increased in past decades due to awareness of the environmental impact of lead contents in soldering alloys. This has led to the introduction and development of different grades of lead-free solder alloys in the global market. Tin-silver-copper is a lead-free alloy which has been acknowledged by different consortia as a good alternative to conventional tin-lead alloy. The purpose of this paper is to provide comprehensive knowledge about the tin-silver-copper series.

Design/methodology/approach

The approach of this study reviews the microstructure and some other properties of tin-silver-copper series after the addition of indium, titanium, iron, zinc, zirconium, bismuth, nickel, antimony, gallium, aluminium, cerium, lanthanum, yttrium, erbium, praseodymium, neodymium, ytterbium, nanoparticles of nickel, cobalt, silicon carbide, aluminium oxide, zinc oxide, titanium dioxide, cerium oxide, zirconium oxide and titanium diboride, as well as carbon nanotubes, nickel-coated carbon nanotubes, single-walled carbon nanotubes and graphene-nano-sheets.

Findings

The current paper presents a comprehensive review of the tin-silver-copper solder series with possible solutions for improving their microstructure, melting point, mechanical properties and wettability through the addition of different elements/nanoparticles and other materials.

Originality/value

This paper summarises the useful findings of the tin-silver-copper series comprehensively. This information will assist in future work for the design and development of novel lead-free solder alloys.

Details

Soldering & Surface Mount Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 23 September 2022

Hamed Al-sorory, Mohammed S. Gumaan and Rizk Mostafa Shalaby

This paper aims to summarise the effects of ZnO nanoparticles (0.1, 0.3, 0.5, 0.7 and 1.0 Wt.%) on the structure, mechanical, electrical and thermal stability of Sn–3.5Ag–0.5Cu…

Abstract

Purpose

This paper aims to summarise the effects of ZnO nanoparticles (0.1, 0.3, 0.5, 0.7 and 1.0 Wt.%) on the structure, mechanical, electrical and thermal stability of Sn–3.5Ag–0.5Cu (SAC355) solder alloys for high-performance applications.

Design/methodology/approach

The phase identification and morphology of the solders were studied using X-ray diffraction and scanning electron microscopy. Thermal parameters were investigated using differential scanning calorimetry. The elastic parameters such as Young's modulus (E) and internal friction (Q−1) were investigated using the dynamic resonance technique, whereas the Vickers hardness (Hv) and creep indentation (n) were examined using a Vickers microhardness tester.

Findings

Microstructural analysis revealed that ZnO nanoparticles (NPs) were distributed uniformly throughout the Sn matrix. Furthermore, addition of 0.1, 0.3 and 0.7 Wt.% of ZnO NPs to the eutectic (SAC355) prevented crystallite size reduction, which increased the strength of the solder alloy. Mechanical parameters such as Young's modulus improved significantly at 0.1, 0.3 and 0.7 Wt.% ZnO NP contents compared to the ZnO-free alloy. This variation can be understood by considering the plastic deformation. The Vickers hardness value (Hv) increased to its maximum as the ZnO NP content increased to 0.5. A stress exponent value (n) of approximately two in most composite solder alloys suggested that grain boundary sliding was the dominant mechanism in this system. The electrical resistance (ρ) increased its maximum value at 0.5 Wt.% ZnO NPs content. The addition of ZnO NPs to plain (SAC355) solder alloys increased the melting temperature (Tm) by a few degrees.

Originality/value

Development of eutectic (SAC355) lead-free solder doped with ZnO NPs use for electronic packaging.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 April 2018

Yuchao Bai, Yongqiang Yang, Zefeng Xiao and Di Wang

This paper aims to verify whether selective laser melting (SLM) could be used for manufacturing mold with conformal cooling channels and determine whether the mechanical properties

Abstract

Purpose

This paper aims to verify whether selective laser melting (SLM) could be used for manufacturing mold with conformal cooling channels and determine whether the mechanical properties development of SLM manufacturing maraging steel mold would be beneficial to improve the quality of mold.

Design/methodology/approach

A series of block specimens and cylindrical tensile specimens are manufactured by SLM, and then are heat treated by solution treatment (ST) and solution treatment + aging treatment (ST + AT), respectively. The development of microstructure, microhardness and tensile strength of specimens is investigated. Then, a mold with conformal cooling channels is designed and manufactured by SLM and machined after ST with microhardness decreasing.

Findings

The morphology of microstructure varies widely under different heat treatment. The microhardness and tensile strength decrease after ST with cellular structure broken, which is conducive to mechanical finishing for mold to improve surface accuracy. After that, the hardness and strength of the mold increase significantly by AT with the precipitation of Ni3Mo, Fe2Mo and Ni3Ti particles. The maraging steel mold with conformal cooling channels can be manufactured by SLM successfully. And the surface accuracy of mold could be improved easily by machining.

Originality/value

Compared with the traditional mold with simple cooling channels, the mold with conformal cooling channels can be manufactured by SLM directly. The hardness of maraging steel mold manufactured by SLM can be reduced through ST, which is conducive to mechanical finishing for overcoming the defect of low precision of SLM directly manufacturing mold. This provides a new way for manufacturing mold of high quality.

Details

Rapid Prototyping Journal, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 7000