Search results

1 – 3 of 3
Article
Publication date: 2 October 2017

Fiaz Ahmad, Akhtar Rasool, Esref Emre Ozsoy, Asif Sabanoviç and Meltem Elitas

This paper aims to propose a robust cascaded controller based on proportional-integral (PI) and continuous sliding mode control.

Abstract

Purpose

This paper aims to propose a robust cascaded controller based on proportional-integral (PI) and continuous sliding mode control.

Design/methodology/approach

Cascaded control structure is an attractive control scheme for DC-DC power converters. It has a two-loop structure where the outer loop contains PI controller and the inner loop uses sliding mode control (SMC). This structure thus combines the merits of both the control schemes. However, there are some issues that have prohibited its adoption in industry, the discontinuous nature of SMC which leads to variable switching frequency operation and is hard to realize practically. This paper attempts to overcome this issue by changing the discontinuous functionality of SMC to continuous by utilizing the concept of equivalent control.

Findings

The robustness of the controller designed is verified by considering various cases, namely, ideal case with no uncertainties, sudden variation of input supply voltage, load resistance, reference voltage, circuit-parameters and for noise disturbance. The controller effectiveness is validated by simulating the DC-DC boost and Cuk converters in SimPowerSystems toolbox of MATLAB/Simulink. It is shown that the performance of the proposed controller is satisfactory, and both reference output voltage and inductor current are tracked with little or no sensitivity to disturbances.

Originality/value

The results for various scenarios are interesting and show that the controller works quite satisfactorily for all the simulated uncertainties.

Details

World Journal of Engineering, vol. 14 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 July 2017

Fiaz Ahmad, Kabir Muhammad Abdul Rashid, Akhtar Rasool, Esref Emre Ozsoy, Asif Sabanoviç and Meltem Elitas

To propose an improved algorithm for the state estimation of distribution networks based on the unscented Kalman filter (IUKF). The performance comparison of unscented Kalman…

Abstract

Purpose

To propose an improved algorithm for the state estimation of distribution networks based on the unscented Kalman filter (IUKF). The performance comparison of unscented Kalman filter (UKF) and newly developed algorithm, termed Improved unscented Kalman Filter (IUKF) for IEEE-30, 33 and 69-bus radial distribution networks for load variations and bad data for two measurement noise scenarios, i.e. 30 and 50 per cent are shown.

Design/methodology/approach

State estimation (SE) plays an instrumental role in realizing smart grid features like distribution automation (DA), enhanced distribution generation (DG) penetration and demand response (DR). Implementation of DA requires robust, accurate and computationally efficient dynamic SE techniques that can capture the fast changing dynamics of distribution systems more effectively. In this paper, the UKF is improved by changing the way the state covariance matrix is calculated, to enhance its robustness and accuracy under noisy measurement conditions. UKF and proposed IUKF are compared under the cummulative effect of load variations and bad data based on various statistical metrics such as Maximum Absolute Deviation (MAD), Maximum Absolute Per cent Error (MAPE), Root Mean Square Error (RMSE) and Overall Performance Index (J) for three radial distribution networks. All the simulations are performed in MATLAB 2014b environment running on an hp core i5 laptop with 4GB memory and 2.6 GHz processor.

Findings

An Improved Unscented Kalman Filter Algorithm (IUKF) is developed for distribution network state estimation. The developed IUKF is used to predict network states (voltage magnitude and angle at all buses) and measurements (source voltage magnitude, line power flows and bus injections) in the presence of load variations and bad data. The statistical performance of the coventional UKF and the proposed IUKF is carried out for a variety of simulation scenarios for IEEE-30, 33 and 69 bus radial distribution systems. The IUKF demonstrated superiority in terms of: RMSE; MAD; MAPE; and overall performance index J for two measurement noise scenarios (30 and 50 per cent). Moreover, it is shown that for a measurement noise of 50 per cent and above, UKF fails while IUKF performs.

Originality/value

UKF shows degraded performance under high measurement noise and fails in some cases. The proposed IUKF is shown to outperform the UKF in all the simulated scenarios. Moreover, this work is novel and has justified improvement in the robustness of the conventional UKF algorithm.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Fiaz Ahmad, Akhtar Rasool, Esref Emre Ozsoy, Asif Sabanoviç and Meltem Elitas

The purpose of this paper is to propose successive-over-relaxation (SOR) based recursive Bayesian approach (RBA) for the configuration identification of a Power System. Moreover…

Abstract

Purpose

The purpose of this paper is to propose successive-over-relaxation (SOR) based recursive Bayesian approach (RBA) for the configuration identification of a Power System. Moreover, to present a comparison between the proposed method and existing RBA approaches regarding convergence speed and robustness.

Design/methodology/approach

Swift power network configuration identification is important for adopting the smart grid features like power system automation. In this work, a new SOR-based numerical approach is adopted to increase the convergence speed of the existing RBA algorithm and at the same time maintaining robustness against noise. Existing RBA and SOR-RBA are tested on IEEE 6 bus, IEEE 14 bus networks and 48 bus Danish Medium Voltage distribution network in the MATLAB R2014b environment and a comparative analysis is presented.

Findings

The comparison of existing RBA and proposed SOR-RBA is performed, which reveals that the latter has good convergence speed compared to the former RBA algorithms. Moreover, it is robust against bad data and noise.

Originality value

Existing RBA techniques have slow convergence and are also prone to measurement noise. Their convergence speed is effected by noisy measurements. In this paper, an attempt has been made to enhance convergence speed of the new identification algorithm while keeping its numerical stability and robustness during noisy measurement conditions. This work is novel and has drastic improvement in the convergence speed and robustness of the former RBA algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3