Search results

1 – 10 of 55
Article
Publication date: 18 April 2024

Vaishali Rajput, Preeti Mulay and Chandrashekhar Madhavrao Mahajan

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired…

Abstract

Purpose

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired algorithms to address complex optimization problems efficiently. These algorithms strike a balance between computational efficiency and solution optimality, attracting significant attention across domains.

Design/methodology/approach

Bio-inspired optimization techniques for feature engineering and its applications are systematically reviewed with chief objective of assessing statistical influence and significance of “Bio-inspired optimization”-based computational models by referring to vast research literature published between year 2015 and 2022.

Findings

The Scopus and Web of Science databases were explored for review with focus on parameters such as country-wise publications, keyword occurrences and citations per year. Springer and IEEE emerge as the most creative publishers, with indicative prominent and superior journals, namely, PLoS ONE, Neural Computing and Applications, Lecture Notes in Computer Science and IEEE Transactions. The “National Natural Science Foundation” of China and the “Ministry of Electronics and Information Technology” of India lead in funding projects in this area. China, India and Germany stand out as leaders in publications related to bio-inspired algorithms for feature engineering research.

Originality/value

The review findings integrate various bio-inspired algorithm selection techniques over a diverse spectrum of optimization techniques. Anti colony optimization contributes to decentralized and cooperative search strategies, bee colony optimization (BCO) improves collaborative decision-making, particle swarm optimization leads to exploration-exploitation balance and bio-inspired algorithms offer a range of nature-inspired heuristics.

Open Access
Article
Publication date: 9 February 2024

Armando Calabrese, Antonio D'Uffizi, Nathan Levialdi Ghiron, Luca Berloco, Elaheh Pourabbas and Nathan Proudlove

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Abstract

Purpose

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Design/methodology/approach

The methodology entails the integration of service design (SD) and action research (AR) methodologies, characterized by iterative phases that systematically alternate between action and reflective processes, fostering cycles of change and learning. Within this framework, stakeholders are engaged through semi-structured interviews, while the existing and envisioned processes are delineated and represented using BPMN 2.0. These methodological steps emphasize the development of an autonomous, patient-centric web application alongside the implementation of an adaptable and patient-oriented scheduling system. Also, business processes simulation is employed to measure key performance indicators of processes and test for potential improvements. This method is implemented in the context of the CP addressing transient loss of consciousness (TLOC), within a publicly funded hospital setting.

Findings

The methodology integrating SD and AR enables the detection of pivotal bottlenecks within diagnostic CPs and proposes optimal corrective measures to ensure uninterrupted patient care, all the while advancing the digitalization of diagnostic CP management. This study contributes to theoretical discussions by emphasizing the criticality of process optimization, the transformative potential of digitalization in healthcare and the paramount importance of user-centric design principles, and offers valuable insights into healthcare management implications.

Originality/value

The study’s relevance lies in its ability to enhance healthcare practices without necessitating disruptive and resource-intensive process overhauls. This pragmatic approach aligns with the imperative for healthcare organizations to improve their operations efficiently and cost-effectively, making the study’s findings relevant.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 16 April 2024

Venkataramanaiah Saddikuti, Surya Prakash, Vijaydeep Siddharth, Kanika Jain and Sidhartha Satpathy

The primary objective of this article is to examine current procurement, inventory control and management practices in modern healthcare, with a particular focus on the…

12

Abstract

Purpose

The primary objective of this article is to examine current procurement, inventory control and management practices in modern healthcare, with a particular focus on the procurement and management of surgical supplies in a prominent public, highly specialized healthcare sector.

Design/methodology/approach

This study was conducted in three phases. In Phase 1, the study team interacted with various hospital management stakeholders, including the surgical hospital store, examined the current procurement process and identified challenges. Phase 2 focused on selecting items for a detailed study and collected the qualitative and quantitative details of the store department of the healthcare sector chosen. A detailed study analyzed revenue, output/demand, inventory levels, etc. In Phase 3, a decision-making framework is proposed, and inventory control systems are redesigned and demonstrated for the selected items.

Findings

It was observed that the demand for many surgical items had increased significantly over the years due to an increase in disposable/disposable items, while inventories fluctuated widely. Maximum inventory levels varied between 50 and 75%. Storage and availability were important issues for the hospital. It is assumed the hospital adopts the proposed inventory control system. In this case, the benefits can be a saving of 62% of the maximum inventory, 20% of the average stock in the system and optimal use of storage space, improving the performance and productivity of the hospital.

Research limitations/implications

This study can help the healthcare sector administration to develop better systems for the procurement and delivery of common surgical items and efficient resource allocation. It can help provide adequate training to store staff. This study can help improve management/procurement policies, ordering and delivery systems, better service levels, and inventory control of items in the hospital business context. This study can serve as a pilot study to further investigate the overall hospital operations.

Practical implications

This study can help the healthcare sector administration develop better systems for procuring and delivering common surgical items and efficient resource allocation. It can help provide adequate training to store staff. This study can help improve management/procurement policies, ordering and delivery systems, better service levels and inventory control of items in the hospital business context. This study can serve as a pilot study to further investigate the overall hospital operations.

Originality/value

This study is an early attempt to develop a decision framework and inventory control system from the perspective of healthcare inventory management. The gaps identified in real hospital scenarios are investigated, and theoretically based-inventory management strategies are applied and proposed.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 19 April 2024

Anthony K. Hunt, Jia Wang, Amin Alizadeh and Maja Pucelj

This paper aims to provide an elucidative and explanatory overview of decision-making theory that human resource management and development (HR) researchers and practitioners can…

Abstract

Purpose

This paper aims to provide an elucidative and explanatory overview of decision-making theory that human resource management and development (HR) researchers and practitioners can use to explore the impact of heuristics and biases on organizational decisions, particularly within HR contexts.

Design/methodology/approach

This paper draws upon three theoretical resources anchored in decision-making research: the theory of bounded rationality, the heuristics and biases program, and cognitive-experiential self-theory (CEST). A selective narrative review approach was adopted to identify, translate, and contextualize research findings that provide immense applicability, connection, and significance to the field and study of HR.

Findings

The authors extract key insights from the theoretical resources surveyed and illustrate the linkages between HR and decision-making research, presenting a theoretical framework to guide future research endeavors.

Practical implications

Decades of decision-making research have been distilled into a digestible and accessible framework that offers both theoretical and practical implications.

Originality/value

Heuristics are mental shortcuts that facilitate quick decisions by simplifying complexity and reducing effort needed to solve problems. Heuristic strategies can yield favorable outcomes, especially amid time and information constraints. However, heuristics can also introduce systematic judgment errors known as biases. Biases are pervasive within organizational settings and can lead to disastrous decisions. This paper provides HR scholars and professionals with a balanced, nuanced, and integrative framework to better understand heuristics and biases and explore their organizational impact. To that end, a forward-looking and direction-setting research agenda is presented.

Details

Personnel Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0048-3486

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 11 July 2023

Oscar Y. Moreno Rocha, Paula Pinto, Maria C. Consuegra, Sebastian Cifuentes and Jorge H. Ulloa

This study aims to facilitate access to vascular disease screening for low-income individuals living in remote and conflict areas based on the results of a pilot trial in…

Abstract

Purpose

This study aims to facilitate access to vascular disease screening for low-income individuals living in remote and conflict areas based on the results of a pilot trial in Colombia. Also, to increase the amount of diagnosis training of vascular surgery (VS) in civilians.

Design/methodology/approach

The operation method includes five stages: strategy development and adjustment; translation of the strategy into a real-world setting; operation logistics planning; strategy analysis and adoption. The operation plan worked efficiently in this study’s sample. It demonstrated high sensibility, efficiency and safety in a real-world setting.

Findings

The authors developed and implemented a flow model operating plan for screening vascular pathologies in low-income patients pro bono without proper access to vascular health care. A total of 140 patients from rural areas in Colombia were recruited to a controlled screening session where they underwent serial noninvasive ultrasound assessments conducted by health professionals of different training stages in VS.

Research limitations/implications

The plan was designed to be implemented in remote, conflict areas with limited access to VS care. Vascular injuries are critically important and common among civilians and military forces in regions with active armed conflicts. As this strategy can be modified and adapted to different medical specialties and geographic areas, the authors recommend checking the related legislation and legal aspects of the intended areas where we will implement this tool.

Practical implications

Different sub-specialties can implement the described method to be translated into significant areas of medicine, as the authors can adjust the deployment and execution for the assessment in peripheral areas, conflict zones and other public health crises that require a faster response. This is necessary, as the amount of training to which VS trainees are exposed is low. A simulated exercise offers a novel opportunity to enhance their current diagnostic skills using ultrasound in a controlled environment.

Social implications

Evaluating and assessing patients with limited access to vascular medicine and other specialties can decrease the burden of vascular disease and related complications and increase the number of treatments available for remote communities.

Originality/value

It is essential to assess the most significant number of patients and treat them according to their triage designation. This management is similar to assessment in remote areas without access to a proper VS consult. The authors were able to determine, classify and redirect to therapeutic interventions the patients with positive findings in remote areas with a fast deployment methodology in VS.

Plain language summary

Access to health care is limited due to multiple barriers and the assessment and response, especially in peripheral areas that require a highly skilled team of medical professionals and related equipment. The authors tested a novel mobile assessment tool for remote and conflict areas in a rural zone of Colombia.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 16 April 2024

Ali Beiki Ashkezari, Mahsa Zokaee, Erfan Rabbani, Masoud Rabbani and Amir Aghsami

Pre-positioning and distributing relief items are important parts of disaster management as it simultaneously considers activities from both pre- and post-disaster stages. This…

Abstract

Purpose

Pre-positioning and distributing relief items are important parts of disaster management as it simultaneously considers activities from both pre- and post-disaster stages. This study aims to address this problem with a novel mathematical model.

Design/methodology/approach

In this research, a bi-objective mixed-integer linear programming model is developed to tackle pre-positioning and distributing relief items, and it is formulated as an integrated location-allocation-routing problem with uncertain parameters. The humanitarian supply chain consists of relief facilities (RFs) and demand points (DPs). Perishable and imperishable relief commodities (RCs), different types of vehicles, different transportation modes, a time window for delivering perishable commodities and the occurrence of unmet demand are considered. A scenario-based game theory is applied for purchasing RCs from different suppliers and an integrated best-worst method-technique for order of preference by similarity to ideal solution technique is implemented to determine the importance of DPs. The proposed model is used to solve several random test problems for verification, and to validate the model, Iran’s flood in 2019 is investigated as a case study for which useful managerial insights are provided.

Findings

Managers can effectively adjust their preferences towards response time and total cost of the network and use sensitivity analysis results in their decisions.

Originality/value

The model locates RFs, allocates DPs to RFs in the pre-disaster stage, and determines the routing of RCs from RFs to DPs in the post-disaster stage with respect to minimizing total costs and response time of the humanitarian logistics network.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 24 March 2022

Elavaar Kuzhali S. and Pushpa M.K.

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150…

Abstract

Purpose

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The COVID-19 diagnosis is required to detect at the beginning stage and special attention should be given to them. The fastest way to detect the COVID-19 infected patients is detecting through radiology and radiography images. The few early studies describe the particular abnormalities of the infected patients in the chest radiograms. Even though some of the challenges occur in concluding the viral infection traces in X-ray images, the convolutional neural network (CNN) can determine the patterns of data between the normal and infected X-rays that increase the detection rate. Therefore, the researchers are focusing on developing a deep learning-based detection model.

Design/methodology/approach

The main intention of this proposal is to develop the enhanced lung segmentation and classification of diagnosing the COVID-19. The main processes of the proposed model are image pre-processing, lung segmentation and deep classification. Initially, the image enhancement is performed by contrast enhancement and filtering approaches. Once the image is pre-processed, the optimal lung segmentation is done by the adaptive fuzzy-based region growing (AFRG) technique, in which the constant function for fusion is optimized by the modified deer hunting optimization algorithm (M-DHOA). Further, a well-performing deep learning algorithm termed adaptive CNN (A-CNN) is adopted for performing the classification, in which the hidden neurons are tuned by the proposed DHOA to enhance the detection accuracy. The simulation results illustrate that the proposed model has more possibilities to increase the COVID-19 testing methods on the publicly available data sets.

Findings

From the experimental analysis, the accuracy of the proposed M-DHOA–CNN was 5.84%, 5.23%, 6.25% and 8.33% superior to recurrent neural network, neural networks, support vector machine and K-nearest neighbor, respectively. Thus, the segmentation and classification performance of the developed COVID-19 diagnosis by AFRG and A-CNN has outperformed the existing techniques.

Originality/value

This paper adopts the latest optimization algorithm called M-DHOA to improve the performance of lung segmentation and classification in COVID-19 diagnosis using adaptive K-means with region growing fusion and A-CNN. To the best of the authors’ knowledge, this is the first work that uses M-DHOA for improved segmentation and classification steps for increasing the convergence rate of diagnosis.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 February 2023

Zakaria Sakyoud, Abdessadek Aaroud and Khalid Akodadi

The main goal of this research work is the optimization of the purchasing business process in the Moroccan public sector in terms of transparency and budgetary optimization. The…

Abstract

Purpose

The main goal of this research work is the optimization of the purchasing business process in the Moroccan public sector in terms of transparency and budgetary optimization. The authors have worked on the public university as an implementation field.

Design/methodology/approach

The design of the research work followed the design science research (DSR) methodology for information systems. DSR is a research paradigm wherein a designer answers questions relevant to human problems through the creation of innovative artifacts, thereby contributing new knowledge to the body of scientific evidence. The authors have adopted a techno-functional approach. The technical part consists of the development of an intelligent recommendation system that supports the choice of optimal information technology (IT) equipment for decision-makers. This intelligent recommendation system relies on a set of functional and business concepts, namely the Moroccan normative laws and Control Objectives for Information and Related Technology's (COBIT) guidelines in information system governance.

Findings

The modeling of business processes in public universities is established using business process model and notation (BPMN) in accordance with official regulations. The set of BPMN models constitute a powerful repository not only for business process execution but also for further optimization. Governance generally aims to reduce budgetary wastes, and the authors' recommendation system demonstrates a technical and methodological approach enabling this feature. Implementation of artificial intelligence techniques can bring great value in terms of transparency and fluidity in purchasing business process execution.

Research limitations/implications

Business limitations: First, the proposed system was modeled to handle one type products, which are computer-related equipment. Hence, the authors intend to extend the model to other types of products in future works. Conversely, the system proposes optimal purchasing order and assumes that decision makers will rely on this optimal purchasing order to choose between offers. In fact, as a perspective, the authors plan to work on a complete automation of the workflow to also include vendor selection and offer validation. Technical limitations: Natural language processing (NLP) is a widely used sentiment analysis (SA) technique that enabled the authors to validate the proposed system. Even working on samples of datasets, the authors noticed NLP dependency on huge computing power. The authors intend to experiment with learning and knowledge-based SA and assess the' computing power consumption and accuracy of the analysis compared to NLP. Another technical limitation is related to the web scraping technique; in fact, the users' reviews are crucial for the authors' system. To guarantee timeliness and reliable reviews, the system has to look automatically in websites, which confront the authors with the limitations of the web scraping like the permanent changing of website structure and scraping restrictions.

Practical implications

The modeling of business processes in public universities is established using BPMN in accordance with official regulations. The set of BPMN models constitute a powerful repository not only for business process execution but also for further optimization. Governance generally aims to reduce budgetary wastes, and the authors' recommendation system demonstrates a technical and methodological approach enabling this feature.

Originality/value

The adopted techno-functional approach enabled the authors to bring information system governance from a highly abstract level to a practical implementation where the theoretical best practices and guidelines are transformed to a tangible application.

Details

Kybernetes, vol. 53 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 April 2024

Mohsen Jami, Hamidreza Izadbakhsh and Alireza Arshadi Khamseh

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic…

Abstract

Purpose

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic, tactical and operational decisions of three levels of blood collection, processing and distribution leads to satisfying the demand at the right time.

Design/methodology/approach

This paper proposes an integrated BSCN in disaster conditions to consider four categories of facilities, including temporary blood collection centers, field hospitals, main blood processing centers and medical centers, to optimize demand response time appropriately. The proposed model applies the location of all permanent and emergency facilities in three levels: blood collection, processing and distribution. Other essential decisions, including multipurpose facilities, emergency transportation, inventory and allocation, were also used in the model. The LP metric method is applied to solve the proposed bi-objective mathematical model for the BSCN.

Findings

The findings show that this model clarifies its efficiency in the total cost and blood delivery time reduction, which results in a low carbon transmission of the blood supply chain.

Originality/value

The researchers proposed an integrated BSCN in disaster conditions to minimize the cost and time of blood delivery. They considered multipurpose capabilities for facilities (e.g. field hospitals are responsible for the three purposes of blood collection, processing and distribution), and so locating permanent and emergency facilities at three levels of blood collection, processing and distribution, support facilities, emergency transportation and traffic on the route with pollution were used to present a new model.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 10 of 55