Search results

1 – 10 of 36
Article
Publication date: 14 December 2023

Miguel Angel Ortíz-Barrios, Stephany Lucia Madrid-Sierra, Antonella Petrillo and Luis E. Quezada

Food manufacturing supply chain systems are the most relevant wheels of the world economy since they provide essential products supporting daily life. Nevertheless, various supply…

Abstract

Purpose

Food manufacturing supply chain systems are the most relevant wheels of the world economy since they provide essential products supporting daily life. Nevertheless, various supply inefficiencies have been reported to compromise food safety in different regions. Sustainable supplier management and digitalization practices have become cornerstone activities in addressing these shortcomings. Therefore, this paper proposes an integrated method for sustainability management in digital manufacturing supply chain systems (DMSCS) from the food industry.

Design/methodology/approach

The Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) was used to weigh the criteria and subcriteria under uncertainty. Second, the Intuitionistic Fuzzy Decision-Making Trial and Evaluation Laboratory (IF-DEMATEL) was applied to determine the main DMSCS sustainability drivers whilst incorporating the expert's hesitancy. Finally, the Combined Compromise Solution (CoCoSo) was implemented to pinpoint the weaknesses hindering DMSCS sustainability. A case study from the pork supply chain was presented to validate this method.

Findings

The most important criterion for DMSCS sustainability management is “location” while “manufacturing capacity” is the most significant dispatcher.

Originality/value

This paper presents a novel approach integrating IF-AHP, IF-DEMATEL, and CoCoSo methods for sustainability management of DMSCS pillaring the food industry.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 4 April 2023

Aluisius Hery Pratono and Asri Maharani

This paper aims to understand how the global supply chain in the medical device industry embraces resilience by adopting agility approach following COVID-19.

Abstract

Purpose

This paper aims to understand how the global supply chain in the medical device industry embraces resilience by adopting agility approach following COVID-19.

Design/methodology/approach

This study adopts an interpretative approach to examine the qualitative data drawn from interviews and observation under dynamic capability theory. The data collection concerned multiple stakeholders involved in purchasing and supply management in the medical device market: manufacturing suppliers, channel partners, hospital management and end-users. The coding analysis uses an application that helps the researchers categorise the nodes and extend the existing literature.

Findings

The findings show that global supply chain leaders leverage the dynamic capability by centralising the business process decision to respond to the shifting demand from the local governments to the national health ministry, shaping the partnership style from the area- to the funnel-based agreement, even though it exposes a risk of product acceptability from the end-users, encouraging the distributor to convert just-in-time approach into holding safety stock to avoid penalty from missing the procurement target even and restructuring the local partners’ debts to manage long-term performance.

Originality/value

This study extends the emerging literature in international business by underpinning dynamic capability theory.

Details

Journal of Asia Business Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1558-7894

Keywords

Article
Publication date: 22 April 2024

Muhammad Abas, Tufail Habib and Sahar Noor

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D…

Abstract

Purpose

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D scanning with the Kinect sensor and conducts a comparative analysis of SAFO durability with varying thicknesses and materials, including polylactic acid (PLA) and carbon fiber-reinforced (PLA-C), to address research gaps from prior studies.

Design/methodology/approach

In this study, the methodology comprises key components: data capture using a cost-effective Microsoft Kinect® Xbox 360 scanner to obtain precise leg dimensions for SAFOs. SAFOs are designed using CAD tools with varying thicknesses (3, 4, and 5 mm) while maintaining consistent geometry, allowing controlled thickness impact investigation. Fabrication uses PLA and PLA-C materials via FDM 3D printing, providing insights into material suitability. Mechanical analysis uses dual finite element analysis to assess force–displacement curves and fracture behavior, which were validated through experimental testing.

Findings

The results indicate that the precision of the scanned leg dimensions, compared to actual anthropometric data, exhibits a deviation of less than 5%, confirming the accuracy of the cost-effective scanning approach. Additionally, the research identifies optimal thicknesses for SAFOs, recommending a 4 and 5 mm thickness for PLA-C-based SAFOs and an only 5 mm thickness for PLA-based SAFOs. This optimization enhances the overall performance and effectiveness of these orthotic solutions.

Originality/value

This study’s innovation lies in its holistic approach, combining low-cost 3D scanning, 3D printing and computational simulations to optimize SAFO materials and thickness. These findings advance the creation of cost-effective and efficient orthotic solutions.

Article
Publication date: 15 April 2024

Boussad Moualek, Simon Chauviere, Lamia Belguerras, Smail Mezani and Thierry Lubin

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Abstract

Purpose

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Design/methodology/approach

The paper deals with the design of an MRI compatible electrical actuator. Three-dimensional electromagnetic and thermal analytical models have been developed to design the actuator. These models have been validated through 3D finite element (FE) computations. The analytical models have been inserted in an optimization procedure that uses genetic algorithms to find the optimal parameters of the actuator.

Findings

The analytical models are very fast and precise compared to the FE models. The computation time is 0.1 s for the electromagnetic analytical model and 3 min for the FE one. The optimized actuator does not perturb imaging sequence even if supplied with a current 10 times higher than its rated one. Indeed, the actuator’s magnetic field generated in the imaging area does not exceed 1 ppm of the B0 field generated by the MRI scanner. The actuator can perform up to 25 biopsy cycles without any risk to the actuator or the patient since he maximum temperature rise of the actuator is about 20°C. The actuator is compact and lightweight compared to its pneumatic counterpart.

Originality/value

The MRI compatible actuator uses the B0 field generated by scanner as inductor. The design procedure uses magneto-thermal coupled models that can be adapted to the design of a variety actuation systems working in MRI environment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 September 2021

Mohammad Ayasrah

Many international radiology societies, including American College of Radiologists (ACR), have established guidelines for optimum forms and contents of medical imaging reports to…

Abstract

Purpose

Many international radiology societies, including American College of Radiologists (ACR), have established guidelines for optimum forms and contents of medical imaging reports to ensure high quality and to guarantee the satisfaction of both the referring physician and the patient. Therefore, this study aims to analyze the criteria of magnetic resonance imaging (MRI) reports in Jordan according to the standards of the ACR.

Design/methodology/approach

This cross-sectional study was conducted in early January 2021 for two weeks. An invitation letter was sent to 85 MRI centers of various health-care sectors in Jordan to participate in the study. Each invitee was requested to send at least ten different MRI reports. The study used a questionnaire containing the checklist of the latest edition 2020 of ACR’s practice parameter to communicate the diagnostic imaging results and the demographic information of the participating MRI centers. Seven basic elements were assessed for content-related quality of MRI reports, which are administrative data, patient demographics, clinical history, imaging procedures, clinical symptoms, imaging observations and impressions. Statistical analyses were used to evaluate the data.

Findings

Forty-one MRI centers participated in the study with 386 different MRI exam reports. The majority (92%) of the reports were computer-generated. Free texted unstructured reports and head-structured reports had an almost equal percentage of around 40%. Exam and radiologist demography as well as exam findings criteria were 100% available in all reports. The percentage of exam conclusion, and exam description and techniques were 2% and 4.9%, respectively (N = 368). There was a positive association between computer-generated reports and the presence of picture archiving and communication systems (PACS)/health information systems r = 0.443.

Originality/value

Structured and free text unstructured reporting were the common types of MRI exam reports in Jordan. Handwriting exam reporting existed in few MRI centers, particularly in those that had no PACS and radiology information systems.

Details

International Journal of Human Rights in Healthcare, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2056-4902

Keywords

Article
Publication date: 30 August 2023

Hossam El-Din Fawzy, Maher Badawy and Magda Farhan

This paper aims to discuss the scanning methodology depending on the close-range photogrammetry technique, which is appropriate for the precise three-dimensional (3D) modelling of…

Abstract

Purpose

This paper aims to discuss the scanning methodology depending on the close-range photogrammetry technique, which is appropriate for the precise three-dimensional (3D) modelling of objects in millimetres, such as the dimensions and structures in sub-millimetre scale.

Design/methodology/approach

The camera was adjusted to be tilted around the horizontal axis, while coded dot targets were used to calibrate the digital camera. The experiment was repeated with different rotation angles (5°, 10°, 15°, 20°, 25°, 30°, 50° and 60°). The images were processed with the PhotoModeler software to create the 3D model of the sample and estimate its dimensions. The features of the sample were measured using high-resolution transmission electron microscopy, which has been considered as a reference and the comparative dimensions.

Findings

The results from the current study concluded that changing the rotation angle does not significantly affect the results, unless the angle of imagery is large which prevent achieving about 20: 30% overlap between the images but, the more angle decreases, the more number of images increase as well as the processing duration in the programme.

Originality/value

Develop an automatic appropriate for the precise 3D modelling of objects in millimetres, such as the dimensions and structures in sub-millimetre scale using photogrammetry.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 February 2024

Robert Bogue

The purpose of this paper is to illustrate the growing role of robots in the logistics industry.

Abstract

Purpose

The purpose of this paper is to illustrate the growing role of robots in the logistics industry.

Design/methodology/approach

Following an introduction, which identifies key challenges facing the industry, this paper discusses robotic applications in warehouses, followed by sections covering transportation and delivery and conclusions.

Findings

The logistics industry faces a number of challenges that drive technological and operational changes. Robots are already playing a role within the warehouse sector and more complex applications have recently arisen from developments in artificial intelligence-enabled vision technology. In the transportation sector, autonomous trucks are being developed and trialled by leading manufacturers. Many major logistics companies are involved and limited services are underway. Last-mile delivery applications are growing rapidly, and trials, pilot schemes and commercial services are underway in Europe, the USA and the Far East. The Chinese market is particularly buoyant, and in 2019, a delivery robot was launched that operates on public roads, based on Level-4 autonomous driving technology. The drone delivery sector has been slower to develop, in part due to regulatory constraints, but services are now being operated by drone manufacturers, retailers and logistics providers.

Originality/value

This paper provides details of existing and future applications of robots in the logistics industry.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 August 2022

Anil Kumar Gona and Subramoniam M.

Biometric scans using fingerprints are widely used for security purposes. Eventually, for authentication purposes, fingerprint scans are not very reliable because they can be…

Abstract

Purpose

Biometric scans using fingerprints are widely used for security purposes. Eventually, for authentication purposes, fingerprint scans are not very reliable because they can be faked by obtaining a sample of the fingerprint of the person. There are a few spoof detection techniques available to reduce the incidence of spoofing of the biometric system. Among them, the most commonly used is the binary classification technique that detects real or fake fingerprints based on the fingerprint samples provided during training. However, this technique fails when it is provided with samples formed using other spoofing techniques that are different from the spoofing techniques covered in the training samples. This paper aims to improve the liveness detection accuracy by fusing electrocardiogram (ECG) and fingerprint.

Design/methodology/approach

In this paper, to avoid this limitation, an efficient liveness detection algorithm is developed using the fusion of ECG signals captured from the fingertips and fingerprint data in Internet of Things (IoT) environment. The ECG signal will ensure the detection of real fingerprint samples from fake ones.

Findings

Single model fingerprint methods have some disadvantages, such as noisy data and position of the fingerprint. To overcome this, fusion of both ECG and fingerprint is done so that the combined data improves the detection accuracy.

Originality/value

System security is improved in this approach, and the fingerprint recognition rate is also improved. IoT-based approach is used in this work to reduce the computation burden of data processing systems.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 7 March 2023

Nazmiye Tufan Tolmaç and Özlenen Erdem İşmal

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Abstract

Purpose

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Design/methodology/approach

Experiments were conducted using different types of materials in FDM 3D printers until the sufficient flexibility was achieved to create textile-like structures. During the research, properties of polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) were observed. Geometrical patterns were printed and each of them gave a different result depending on the pattern. Based on the information obtained from the experiments, a garment collection with four total looks was designed inspired by Vivaldi’s “Four Seasons”.

Findings

Among the materials used, TPU, a flexible filament, yielded the best results. Because of the rigid properties of PLA and ABS, chain-like structures were printed to create relatively flexible surfaces, but the results were still not successful enough to create a clothing material. Therefore, TPU was preferred for the garment material selection.

Originality/value

In this study, combinations of 3D printed flexible structures and different types of fabrics were used to create a garment collection. It was concluded that, with the right material selection, 3D printing can be used as an alternative method to create a new aesthetic language in fashion design.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 36