Search results

1 – 10 of over 1000
Article
Publication date: 21 June 2013

P. Ponnusamy

This paper aims to describe the method for solving vibration problem of electro‐magneto‐elastic plate of polygonal (triangle, square, pentagon and hexagon) cross‐sections using…

Abstract

Purpose

This paper aims to describe the method for solving vibration problem of electro‐magneto‐elastic plate of polygonal (triangle, square, pentagon and hexagon) cross‐sections using Fourier expansion collocation method (FECM).

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an electro‐magneto‐elastic plate of polygonal cross‐sections using the theory of elasticity. The frequency equations are obtained from the arbitrary cross‐sectional boundary conditions, since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the surface of the plate directly. Hence, the FECM is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is clear that the free vibration of electro‐magneto‐elastic plate of polygonal cross‐sections have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of electro‐magneto‐elastic plates are based on the traditional circular cross‐sections only. So, in this paper, the wave propagation in electro‐magneto‐elastic plate of polygonal cross‐sections is studied using the FECM. The computed non‐dimensional frequencies are plotted in the form of dispersion curves and their characteristics are discussed.

Originality/value

The researchers have discussed the circular, rectangular, triangular and square cross‐sectional plates by the boundary conditions. In this problem, the author studied the vibrations of polygonal (triangle, square, pentagon and hexagon) cross‐sectional plates using the geometrical relation which is applicable to all the cross‐sections. The problem may be extended to any kinds of cross‐sections by using the proper geometrical relations.

Article
Publication date: 27 September 2011

P. Ponnusamy

The purpose of this paper is to study the wave propagation in a homogeneous isotropic, thermo‐elastic plate of arbitrary cross‐sections using the two‐dimensional theory of

Abstract

Purpose

The purpose of this paper is to study the wave propagation in a homogeneous isotropic, thermo‐elastic plate of arbitrary cross‐sections using the two‐dimensional theory of thermo‐elasticity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an arbitrary cross‐sectional thermo‐elastic plate by using two‐dimensional theory of thermo‐elasticity. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been derived by using the boundary conditions prevailing at the arbitrary cross‐sectional surface of the plate for symmetric and antisymmetrical modes in completely separate forms using Fourier expansion collocation method. The roots of the frequency equation are obtained by using the secant method, applicable for complex roots.

Findings

The computed non‐dimensional frequencies are compared with those results available in the literature in the case of elliptic cross‐sectional solid plate with clamped edges without thermal field and this result is coincide with the results of Nagaya. The computed non‐dimensional frequencies are plotted in the form of dispersion curves for longitudinal and flexural (symmetric and antisymmetric) modes of vibrations for the material copper.

Originality/value

The wave propagation in a plate of arbitrary cross‐sections with the stress free (unclamped) and rigidly fixed (clamped) edges are analyzed with and without thermal field.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 February 2018

Rajendran Selvamani

This study aims to construct a mathematical model to study the dispersion analysis of magneto-electro elastic plate of arbitrary cross sections immersed in fluid by using the…

Abstract

Purpose

This study aims to construct a mathematical model to study the dispersion analysis of magneto-electro elastic plate of arbitrary cross sections immersed in fluid by using the Fourier expansion collocation method (FECM).

Design/methodology/approach

The analytical formulation of the problem is designed and developed using three-dimensional linear elasticity theories. As the inner and outer boundaries of the arbitrary cross-sectional plate are irregular, the frequency equations are obtained from the arbitrary cross-sectional boundary conditions by using FECM. The roots of the frequency equation are obtained using the secant method, which is applicable for complex solutions.

Findings

The computed physical quantities such as radial stress, hoop strain, non-dimensional frequency, magnetic potential and electric potential are plotted in the form of dispersion curves, and their characteristics are discussed. To study the convergence, the non-dimensional wave numbers of longitudinal modes of arbitrary (elliptic and cardioid) cross-sectional plates are obtained using FECM and finite element method and are presented in a tabular form. This result can be applied for optimum design of composite plates with arbitrary cross sections.

Originality/value

This paper contributes the analytical model for the role of arbitrary cross-sectional boundary conditions and impact of fluid loading on the dispersion analysis of magneto-electro elastic plate. From the graphical patterns of the structure, the effects of stress, strain, magnetic, electric potential and the surrounding fluid on the various considered wave characteristics are more significant and dominant in the cardioid cross sections. Also, the aspect ratio (a/b) and the geometry parameters of elliptic and cardioids cross sections are significant to the industry or other fields that require more flexibility in design of materials with arbitrary cross sections.

Article
Publication date: 12 November 2010

A. Kumaravel, N. Ganesan and Raju Sethuraman

The purpose of the paper is to investigate the linear thermal buckling and vibration analysis of layered and multiphase magneto‐electro‐elastic (MEE) cylinders made of

Abstract

Purpose

The purpose of the paper is to investigate the linear thermal buckling and vibration analysis of layered and multiphase magneto‐electro‐elastic (MEE) cylinders made of piezoelectric/piezomagnetic materials using finite element method.

Design/methodology/approach

The constitutive equations of MEE materials are used to derive the finite element equations involving the coupling between mechanical, electrical, magnetic and thermal fields. The present study is limited to clamped‐clamped boundary conditions. The linear thermal buckling is carried out for an axisymmetric cylinder operating in a steady state axisymmetric uniform temperature rise. The influence of stacking sequences and volume fraction of multiphase MEE materials on critical buckling temperature and vibration behaviour is investigated. The influence of coupling effects on critical buckling temperature and vibration behaviour is also studied.

Findings

The critical buckling temperature is higher for MEE axisymmetric cylinder as compared to elastic cylinder.

Originality/value

Linear thermal buckling and vibration analysis of MEE axisymmetric cylinders are studied using the finite element approach. The structure can be used for active vibration control, sensors and actuators. Studying the buckling and vibration behaviour of such structures and influence of coupling effect is extremely useful for the design of magnetoelectroelastic structures.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 November 2020

Amir Hossein Rabiee and Mostafa Esmaeili

This study aims to explore an active control strategy for attenuation of in-line and transverse flow-induced vibration (FIV) of two tandem-arranged circular cylinders.

Abstract

Purpose

This study aims to explore an active control strategy for attenuation of in-line and transverse flow-induced vibration (FIV) of two tandem-arranged circular cylinders.

Design/methodology/approach

The control system is based on the rotary oscillation of cylinders around their axis, which acts according to the lift coefficient feedback signal. The fluid-solid interaction simulations are performed for two velocity ratios (V_r = 5.5 and 7.5), three spacing ratios (L/D = 3.5, 5.5 and 7.5) and three different control cases. Cases 1 and 2, respectively, deal with the effect of rotary oscillation of front and rear cylinders, while Case 3 considers the effect of applied rotary oscillation to both cylinders.

Findings

The results show that in Case 3, the FIV of both cylinders is perfectly reduced, while in Case 2, only the vibration of rear cylinder is mitigated and no change is observed in the vortex-induced vibration of front cylinder. In Case 1, by rotary oscillation of the front cylinder, depending on the reduced velocity and the spacing ratio values, the transverse oscillation amplitude of the rear cylinder suppresses, remains unchanged and even increases under certain conditions. Hence, at every spacing ratio and reduced velocity, an independent controller system for each cylinder is necessary to guarantee a perfect vibration reduction of front and rear cylinders.

Originality/value

The current manuscript seeks to deploy a type of active rotary oscillating (ARO) controller to attenuate the FIV of two tandem-arranged cylinders placed on elastic supports. Three different cases are considered so as to understand the interaction of these cylinders regarding the rotary oscillation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2018

Fanming Meng, Minggang Du, Xianfu Wang, Yuanpei Chen and Qing Zhang

The purpose of this study is to investigate the effects of the axial piston pin motion on the tribological performances of the piston skirt and cylinder liner vibration for an…

Abstract

Purpose

The purpose of this study is to investigate the effects of the axial piston pin motion on the tribological performances of the piston skirt and cylinder liner vibration for an internal combustion engine (ICE) under different operation conditions.

Design/methodology/approach

The dynamic equation for the piston incorporating into axial piston pin motion is derived first. Then, the proposed equation and associated lubrication equations are solved using the Broyden algorithm and difference method, respectively. Moreover, the axial motion of the piston pin and its slap on the cylinder liner are studied under different operation conditions.

Findings

The axial piston pin motion leads to an overall increase in the friction power consumption. Increments in the ICE speed and lubricant viscosity can augment the axial pin motion and cylinder liner vibration, especially in the power stroke. The said increments cause the instability of the piston motion in the cylinder. The axial motion of piston pin can be restrained through the eccentricity of the piston pin close to the thrust side of the cylinder liner.

Originality/value

This study conducts detailed discussions of the effect of axial piston pin motion on tribological and dynamic performances for piston skirt-cylinder liner system of an internal combustion engine and gives a helpful reference to analyses and designs of internal combustion engines.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 September 2011

J.N. Sharma, H. Singh and Y.D. Sharma

The purpose of this paper is to analyze the free vibrations in a stress free and thermally insulated (or isothermal), homogeneous, transversely isotropic, solid cylinder based on…

Abstract

Purpose

The purpose of this paper is to analyze the free vibrations in a stress free and thermally insulated (or isothermal), homogeneous, transversely isotropic, solid cylinder based on three‐dimensional coupled thermoelasticity, which is initially undeformed and kept at uniform temperature.

Design/methodology/approach

The displacement potential functions have been introduced in the equations of motion and heat conduction in order to decouple the purely shear and longitudinal motions. The system of governing partial differential equations is reduced to four second‐order coupled ordinary differential equations in radial coordinate by using the method of separation of variables. The matrix Frobenius method of extended power series is employed to obtain the solution of coupled ordinary differential equations along the radial coordinate. The convergence analysis of matrix Frobenius method has been successfully carried out.

Findings

The purely transverse mode is found to be independent of the rest of the motion and temperature change. The natural frequency, dissipation factor, inverse quality factor and frequency shift of vibrations in a stress free solid cylinder get significantly affected due to thermal variations and thermo‐mechanical coupling.

Originality/value

A new procedure is used and compared to other methods available in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 March 2023

Mostafa Esmaeili and Amir Hossein Rabiee

This study aims to numerically explore the heat transfer characteristics in turbulent two-degree-of-freedom vortex-induced vibrations (VIVs) of three elastically mounted circular…

Abstract

Purpose

This study aims to numerically explore the heat transfer characteristics in turbulent two-degree-of-freedom vortex-induced vibrations (VIVs) of three elastically mounted circular cylinders.

Design/methodology/approach

The cylinders are at the vertices of an isosceles triangle with a base and height that are the same. The finite volume technique is used to calculate the Reynolds-averaged governing equations, whereas the structural dynamics equations are solved using the explicit integration method. Simulations are performed for three different configurations, constant mass ratio and natural frequency, as well as distinct reduced velocity values.

Findings

As a numerical challenge, the super upper branch observed in the experiment is well-captured by the current numerical simulations. According to the computation findings, the vortex-shedding around the cylinders increases flow mixing and turbulence, hence enhancing heat transfer. At most reduced velocities, the Nusselt number of downstream cylinders is greater than that of upstream cylinders due to the impact of wake-induced vibration, and the maximum heat transfer improvement of these cylinders is 21% (at Ur = 16), 23% (at Ur = 5) and 20% (at Ur = 15) in the first, second and third configurations, respectively.

Originality/value

The main novelty of this study is inspecting the thermal behavior and turbulent flow–induced vibration of three circular cylinders in the triangular arrangement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2015

Fabien Hospital, Marc Budinger, Aurélien Reysset and Jean-Charles Maré

This paper aims to propose preliminary design models of actuator housing that enable various geometries to be compared without requiring detailed knowledge of the actuator…

Abstract

Purpose

This paper aims to propose preliminary design models of actuator housing that enable various geometries to be compared without requiring detailed knowledge of the actuator components. Aerospace actuation systems are currently tending to become more electrical and fluid free. Methodologies and models already exist for designing the mechanical and electrical components, but the actuator housing design is still sketchy.

Design/methodology/approach

The approach is dedicated to linear actuators, the most common in aerospace. With special attention paid to mechanical resistance to the vibratory environment, simplified geometries are proposed to facilitate the generation of an equivalent formal development. The vibratory environment imposes the sizing of the actuator housing. Depending on the expected level of details and to vibration boundary conditions, three levels of modeling have been realized.

Findings

This paper shows that the vibrations induced by aircraft environment are not design drivers for conventional hydraulic actuators but can be an issue for new electromechanical actuators. The weight of the latter can be optimized through a judicious choice of the diameter of the housing.

Practical implications

This approach is applied to a comparison of six standard designs of linear actuator geometries after validation of the consistency of the different models. Early conclusions can be drawn and may lead to design perspectives for the definition of actuator architecture and the optimization of the design.

Originality/value

This paper has demonstrated the importance of the vibratory environment in the design of linear actuator housing, especially for electro-mechanical actuators with important strokes. Developed analytical models can be used for the overall design and optimization of these new aerospace actuators.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 10 July 2017

Chaoran Liu, Yufeng Su, Jinzhao Yue, Junjie Wang, Weiwei Xia, Dongxue Li, Wen Wang, Pan Wang and Zhiyong Duan

A self-adaptive piston is designed for the compressional gas cushion press nanoimprint lithography system. It avoids the lube pollution and high wear of traditional piston.

Abstract

Purpose

A self-adaptive piston is designed for the compressional gas cushion press nanoimprint lithography system. It avoids the lube pollution and high wear of traditional piston.

Design/methodology/approach

The self-adaptive piston device consists of symmetrical piston bodies, piston rings and other parts. The two piston bodies are linked by a ball-screw. The locking nut adjusts the distance between two piston bodies to avoid the piston rings from being stuck. The piston rings are placed between two piston bodies.

Findings

The simulation results based on COMSOL indicate that cylinder vibration caused by self-adaptive piston is 15.9 times smaller than the one caused by a traditional piston.

Originality/value

The self-adaptive piston is superior to the traditional piston in decreasing cylinder vibration.

Details

Industrial Lubrication and Tribology, vol. 69 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000