Search results

1 – 10 of 466
Article
Publication date: 2 June 2023

Lina Gozali, Teuku Yuri M. Zagloel, Togar Mangihut Simatupang, Wahyudi Sutopo, Aldy Gunawan, Yun-Chia Liang, Bernardo Nugroho Yahya, Jose Arturo Garza-Reyes, Agustinus Purna Irawan and Yuliani Suseno

This research studies the development of the evolving dynamic system model and explores the important elements or factors and what detailed attributes are the main influences…

Abstract

Purpose

This research studies the development of the evolving dynamic system model and explores the important elements or factors and what detailed attributes are the main influences model in achieving the success of a business, industry and management. It also identifies the real and major differences between static and dynamic business management models and the detailed factors that influence them. Later, this research investigates the benefits/advantages and limitations/disadvantages of some research studies. The studies conducted in this research put more emphasis on the capabilities of system dynamics (SD) in modeling and the ability to measure, analyse and capture problems in business, industry, manufacturing etc.

Design/methodology/approach

The research presented in this work is a qualitative research based on a literature review. Publicly available research publications and reports have been used to create a research foundation, identify the research gaps and develop new analyses from the comparative studies. As the literature review progressed, the scope of the literature search was further narrowed down to the development of SD models. Often, references to certain selected literature have been examined to find other relevant literature. To do so, a supporting tool (that connects related articles) provided by Google Scholar, Scopus, and particular journals has been used.

Findings

The dynamic business and management model is very different from the static business model in complexity, formality, flexibility, capturing, relationships, advantages, innovation model, new goals, updated information, perspective and problem-solving abilities. The initial approach of a static system was applied in the canvas business model, but further developments can be continued with a dynamic system approach.

Research limitations/implications

Based on this study, which shows that businesses are developing more towards digitalisation, wanting the ability to keep up with the era that is moving so fast and the desire to increase profits, an instrument is needed that can help describe the difficulties of the needs and developments of the future world. This instrument, or tool of SD, is also expected to assist in drawing future models and in building a business with complex variables that can be predicted from the beginning.

Practical implications

This study will contribute to the SD study for many business incubator research studies. Many practical in business incubator management to have a benefit how to achieve the business performance management (BPM) in SD review.

Originality/value

The significant differences between static and dynamics to be used for business research and strategic performance management. This comparative study analyses some SD models from many authors worldwide. Their goals behind their strategic business models and encounter for their respective progress.

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

48

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 April 2024

Fei Shang, Bo Sun and Dandan Cai

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal…

Abstract

Purpose

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal lubrication state. The oil film thickness is a crucial parameter reflecting the lubrication status of bearings, directly influencing the operational state of bearing transmission systems. However, it is challenging to accurately measure the oil film thickness under traditional disassembly conditions due to factors such as bearing structure and working conditions. Therefore, there is an urgent need for a nondestructive testing method to measure the oil film thickness and its status.

Design/methodology/approach

This paper introduces methods for optically, electrically and acoustically measuring the oil film thickness and status of bearings. It discusses the adaptability and measurement accuracy of different bearing oil film measurement methods and the impact of varying measurement conditions on accuracy. In addition, it compares the application scenarios of other techniques and the influence of the environment on detection results.

Findings

Ultrasonic measurement stands out due to its widespread adaptability, making it suitable for oil film thickness detection in various states and monitoring continuous changes in oil film thickness. Different methods can be selected depending on the measurement environment to compensate for measurement accuracy and enhance detection effectiveness.

Originality/value

This paper reviews the basic principles and latest applications of optical, electrical and acoustic measurement of oil film thickness and status. It analyzes applicable measurement methods for oil film under different conditions. It discusses the future trends of detection methods, providing possible solutions for bearing oil film thickness detection in complex engineering environments.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 March 2024

Yash Daultani, Ashish Dwivedi, Saurabh Pratap and Akshay Sharma

Natural disasters cause serious operational risks and disruptions, which further impact the food supply in and around the disaster-impacted area. Resilient functions in the supply…

35

Abstract

Purpose

Natural disasters cause serious operational risks and disruptions, which further impact the food supply in and around the disaster-impacted area. Resilient functions in the supply chain are required to absorb the impact of resultant disruptions in perishable food supply chains (FSC). The present study identifies specific resilient functions to overcome the problems created by natural disasters in the FSC context.

Design/methodology/approach

The quality function deployment (QFD) method is utilized for identifying these relations. Further, fuzzy term sets and the analytical hierarchy process (AHP) are used to prioritize the identified problems. The results obtained are employed to construct a QFD matrix with the solutions, followed by the technique for order of preference by similarity to the ideal solution (TOPSIS) on the house of quality (HOQ) matrix between the identified problems and functions.

Findings

The results from the study reflect that the shortage of employees in affected areas is the major problem caused by a natural disaster, followed by the food movement problem. The results from the analysis matrix conclude that information sharing should be kept at the highest priority by policymakers to build and increase resilient functions and sustainable crisis management in a perishable FSC network.

Originality/value

The study suggests practical implications for managing a FSC crisis during a natural disaster. The unique contribution of this research lies in finding the correlation and importance ranking among different resilience functions, which is crucial for managing a FSC crisis during a natural disaster.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 25 March 2024

Shivangi Viral Thakker, Santosh B. Rane and Vaibhav S. Narwane

Digital supply chains require nascent technologies like blockchain and Internet of Things (IoT). There is a need to develop a roadmap for the implementation of these technologies…

Abstract

Purpose

Digital supply chains require nascent technologies like blockchain and Internet of Things (IoT). There is a need to develop a roadmap for the implementation of these technologies, as they require a huge amount of resources and infrastructure. The purpose of this paper is to analyze the challenges of implementing blockchain-IoT integrated architecture in the green supply chain and develop strategies for the same.

Design/methodology/approach

After a thorough literature survey of Scopus-indexed journals and books, 37 barriers were identified, which were then brought down to 15 barriers after confirming with industry and academic experts using the Delphi method. Using the total interpretive structural modeling (TISM) method and cross-impact matrix multiplication applied to classification (MICMAC) analysis, the barriers were modeled, and finally, strategies were formulated using a concept map to handle the barriers in the blockchain-IoT integrated architecture for a green supply chain.

Findings

This paper presents the research on barriers that can be considered for incorporating blockchain and IoT in the green supply chain. It was found from the TISM model that environmental concerns are Level-1 barriers and need to be addressed by developing appropriate technology and allocating funds for the same. An integrated ecosystem with blockchain and IoT is developed.

Research limitations/implications

The focus of this study was on the challenges of blockchain and IoT; hence, it is required to extend the research and find challenges for different industries and also analyze the criteria using other multi-criteria decision-making (MCDM) methods. Further research is required for the integration of blockchain-IoT with supply chain functions.

Practical implications

The transformation of a traditional supply chain into a green supply chain is possible with the integration of technologies. This research work and the strategies developed are useful to managers and practitioners working on technology implementation. Planning resources and addressing key barriers is possible with the concept maps and architecture developed.

Social implications

Green supply chain management (SCM) is gaining importance in industry as well as the academic sector due to government Policies and norms worldwide for reducing emissions and encouraging environment-friendly production systems. Incorporating blockchain and IoT in a green supply chain will further digitize and increase transparency in supply chains.

Originality/value

We have done a categorization of all barriers based on the expert survey by academicians and industry experts from industries in India. The concept map helps in identifying possible solutions for the challenges and initiatives to be taken for the smooth integration of technologies in the green supply chain.

Details

Modern Supply Chain Research and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 14 June 2022

Samuel Adeniyi Adekunle, Clinton Ohis Aigbavboa and Obuks Augustine Ejohwomu

The implementation of BIM in the construction industry requires the coevolution of the various aspects of the BIM ecosystem. The human dimension is a very important dimension of…

1539

Abstract

Purpose

The implementation of BIM in the construction industry requires the coevolution of the various aspects of the BIM ecosystem. The human dimension is a very important dimension of the ecosystem necessary for BIM implementation. It is imperative to study this aspect of the BIM ecosystem both from the employer perspective and employee availability to provide insights for stakeholders (job seekers, employers, students, researchers, policymakers, higher education institutions, career advisors and curriculum developers) interested in the labour market dynamics.

Design/methodology/approach

To understand the BIM actor roles through the employer lens and the actual BIM actors in the construction industry, this study employed data mining of job adverts from LinkedIn and Mncjobs website. Content analysis was employed to gain insights into the data collected. Also, through a quantitative approach, the existing BIM actor roles were identified.

Findings

The study identified the employers' expectations of BIM actors; however, it is noted that the BIM actor recruitment space is still a loose one as recruiters put out open advertisements to get a large pool of applicants. From the data analysed, it is concluded that the BIM actor role is not an entirely new profession. However, it simply exists as construction industry professionals with BIM tool skills. Also, the professional development route is not well defined yet.

Originality/value

This study presents a realistic angle to BIM actor roles hence enhancing BIM implementation from the human perspective. The findings present an insight into the preferred against the actual.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 April 2024

Jian Sun, Zhanshuai Fan, Yi Yang, Chengzhi Li, Nan Tu, Jian Chen and Hailin Lu

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low…

Abstract

Purpose

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low hardness and strength of the surface of aluminum alloys are the main factors that limit their applications. The purpose of this study is to obtain a composite coating with high hardness and lubricating properties by applying GO–PVA over MAO coating.

Design/methodology/approach

A pulsed bipolar power supply was used as power supply to prepare the micro-arc oxidation (MAO) coating on 6061 aluminum sample. Then a graphene oxide-polyvinyl alcohol (GO–PVA) composite coating was prepared on MAO coating for subsequent experiments. Samples were characterized by Fourier infrared spectroscopy, X-ray diffraction, Raman spectroscopy and thermogravimetric analysis. The friction test is carried out by the relative movement of the copper ball and the aluminum disk on the friction tester.

Findings

Results showed that the friction coefficient of MAO samples was reduced by 80% after treated with GO–PVA composite film.

Originality/value

This research has made a certain contribution to the surface hardness and tribological issues involved in the lightweight design of aluminum alloys.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0427/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 March 2022

Ying Lv, Jinlong Feng, Guangbin Wang and Hua Li

This study aims to improve the maneuverability and stability of four-wheel chassis in a small paddy field; a front axle swing steering four-wheel chassis with optimal steering is…

Abstract

Purpose

This study aims to improve the maneuverability and stability of four-wheel chassis in a small paddy field; a front axle swing steering four-wheel chassis with optimal steering is designed.

Design/methodology/approach

When turning, the front inner wheel stops and the rear inner wheel is in the following state. The hydraulic drive system of the walking wheel adopts a driving mode in which two front-wheel motors are connected in series and two rear wheel motors in parallel. The chassis uses a combination of a gasoline engine with a water cooling system, a CVT continuously variable transmission and a hydraulic drive system to increase the control capability. The front axle rotary chassis adopts a step-less variable speed engine and a hydraulic control system to solve the hydraulic stability of the chassis in uphill and downhill conditions so as to effectively control the over-speed of the wheel-side drive motors. Through the quadratic orthogonal rotation combination design test, the mathematical models of uphill and downhill front-wheel pressures and test factors are established.

Findings

The results show that the chassis stability is optimal when the back pressure is 0.5 MPa, and the rotating slope is 4°. The uphill and downhill pressures of the front wheels are 2.38 MPa and 1.5 MPa, respectively.

Originality/value

The influence of external changes on the pressure of hydraulic motors is studied through experiments, which lays the foundation for further research.

Details

Journal of Engineering, Design and Technology, vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 15 February 2023

Tiago F.A.C. Sigahi and Laerte Idal Sznelwar

The purpose of this paper is twofold: (1) to map and analyze existing complexity typologies and (2) to develop a framework for characterizing complexity-based approaches.

Abstract

Purpose

The purpose of this paper is twofold: (1) to map and analyze existing complexity typologies and (2) to develop a framework for characterizing complexity-based approaches.

Design/methodology/approach

This study was conducted in three stages: (1) initial identification of typologies related to complexity following a structured procedure based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol; (2) backward and forward review to identify additional relevant typologies and (3) content analysis of the selected typologies, categorization and framework development.

Findings

Based on 17 selected typologies, a comprehensive overview of complexity studies is provided. Each typology is described considering key concepts, contributions and convergences and differences between them. The epistemological, theoretical and methodological diversity of complexity studies was explored, allowing the identification of the main schools of thought and authors. A framework for characterizing complexity-based approaches was proposed including the following perspectives: ontology of complexity, epistemology of complexity, purpose and object of interest, methodology and methods and theoretical pillars.

Originality/value

This study examines the main typologies of complexity from an integrated and multidisciplinary perspective and, based on that, proposes a novel framework to understanding and characterizing complexity-based approaches.

Details

Kybernetes, vol. 53 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 466