Search results

1 – 10 of over 2000
Article
Publication date: 17 August 2020

Ali Belhocine and Oday Ibraheem Abdullah

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal…

Abstract

Purpose

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal analysis and the static structural sequentially with the coupled method. Computational fluid dynamics analysis will help the authors in the calculation of the values of the heat transfer (h) that will be exploited in the transient evolution of the brake disc temperatures. Finally, the model resolution allows the authors to visualize other important results of this research such as the deformations and the Von Mises stress on the disc, as well as the contact pressure of the brake pads.

Design/methodology/approach

A transient finite element analysis (FEA) model was developed to calculate the temperature distribution of the brake rotor with respect to time. A steady-state CFD model was created to obtain convective heat transfer coefficients (HTC) that were used in the FE model. Because HTCs are dependent on temperature, it was necessary to couple the CFD and FEA solutions. A comparison was made between the temperature of full and ventilated brake disc showing the importance of cooling mode in the design of automobile discs.

Findings

These results are quite in good agreement with those found in reality in the brake discs in service and those that may be encountered before in literature research investigations of which these will be very useful for engineers and in the design field in the vehicle brake system industry. These are then compared to experimental results obtained from literatures that measured ventilated discs surface temperatures to validate the accuracy of the results from this simulation model.

Originality/value

The novelty of the work is the application of the FEM to solve the thermomechanical problem in which the results of this analysis are in accordance with the realized and in the current life of the braking phenomenon and in the brake discs in service thus with the thermal gradients and the phenomena of damage observed on used discs brake.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 September 2017

Wang Chengmin, Yang Xuefeng, Cai Xiguang, Ma Tao, Li Yunxi and Song Peilong

This paper aims to thrash out friction and wear properties of automobile brake lining reinforced by lignin fiber and glass fiber in braking process.

313

Abstract

Purpose

This paper aims to thrash out friction and wear properties of automobile brake lining reinforced by lignin fiber and glass fiber in braking process.

Design/methodology/approach

ABAQUS finite element software was used to analyze thermo-mechanical coupled field of friction materials. XD-MSM constant speed friction testing machine was used to test friction and wear properties of friction material. Worn surface morphology and mechanism of friction materials were observed by using scanning electron microscope.

Findings

The results show that when the temperature was below 350°C, worn mechanism of MFBL was mainly fatigue wear and abrasive wear, and worn mechanism of GFBL was mainly fatigue wear because MFBL contained lignin fiber. Therefore, it exhibits better mechanical properties and friction and wear properties than those of GFBL.

Originality/value

Lignin fiber can improve mechanical properties and friction and wear properties of the automobile brake lining.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 July 2013

Ali Belhocine and Mostefa Bouchetara

The main purpose of this study is to analyse the thermomechanical behavior of the dry contact between the brake disc and pads during the braking phase.

Abstract

Purpose

The main purpose of this study is to analyse the thermomechanical behavior of the dry contact between the brake disc and pads during the braking phase.

Design/methodology/approach

The simulation strategy is based on computer code ANSYS11. The modeling of transient temperature in the disc is actually used to identify the factor of geometric design of the disc to install the ventilation system in vehicles. The thermal‐structural analysis is then used coupling to determine the deformation and the Von Mises stress established in the disc, the contact pressure distribution in pads.

Findings

The analysis results showed that temperature field and stress field in the process of braking phase were fully coupled.

Originality/value

The results are satisfactory when compared with those of the specialized literature.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 January 2015

Gang Chen and Wei-gong Zhang

The purpose of this paper is to present a prototype simulation system for driving performance of an electromagnetic unmanned robot applied to automotive test (URAT) to solve that…

Abstract

Purpose

The purpose of this paper is to present a prototype simulation system for driving performance of an electromagnetic unmanned robot applied to automotive test (URAT) to solve that it is difficult and dangerous to online debug control program and to quickly obtain test vehicle dynamic performance.

Design/methodology/approach

The driving performance of the electromagnetic URAT can be evaluated by the prototype simulation system. The system can simulate various driving conditions of test vehicles. An improved vehicle longitudinal dynamics model matching to the electromagnetic URAT is established. The proposed model has good real-time, and it is easy to implement. The displacement of throttle mechanical leg, brake mechanical leg, clutch mechanical leg and shift mechanical arm is used for the system input. Test vehicle speed and engine speed are used for the system output, and they are obtained by the computation of the established vehicle longitudinal dynamics model.

Findings

Driving conditions simulation test and vehicle emission test are performed using a Ford Focus car. Simulation and experiment results show that the proposed prototype simulation system in the paper can simulate the driving conditions of actual vehicles, and the performance that electromagnetic URAT drives an actual vehicle is evaluated by the simulation system.

Research limitations/implications

Future research will focus on improving the real time of the proposed simulation system.

Practical implications

The autonomous driving performance of electromagnetic URAT can be evaluated by the proposed prototype simulation system.

Originality/value

A prototype simulation system for driving performance of an electromagnetic URAT based on an improved vehicle longitudinal dynamics model is proposed in this paper, so that it can solve the difficulty and danger of online debugging control program, quickly obtaining the test vehicle performance.

Details

Industrial Robot: An International Journal, vol. 42 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2021

Xiaoyu Yan, Chenglong Fan, Wei Wang, Xiaojun Liu and Bingsan Chen

A dynamic model of the brake system considering the tangential and radial motion of the pad, and the torsion and wobbling motion of the disk is established in this paper. The…

Abstract

Purpose

A dynamic model of the brake system considering the tangential and radial motion of the pad, and the torsion and wobbling motion of the disk is established in this paper. The influence of radial stiffness on the brake system is investigated under different tribological conditions. This paper aims to prove that sufficient radial stiffness is indispensable in the design of the brake system with good tribological performance.

Design/methodology/approach

By using the lumped mass method, a dynamic model of the brake system is established. A Stribeck-type friction model is applied to this model to correlate the frictional velocity, pressure and friction force. The stability of pad vibration is analysed by analysis methods. A new stability evaluation parameter is proposed to study the influence of radial stiffness on stability of pad vibration in a certain friction coefficient brake pressure range.

Findings

The findings show that the tangential vibration of the pad transits from periodic motion to quasi-periodic motion under a low tangential stiffness. The influence of radial stiffness on motion stability is stronger under a low nominal brake radius. The stability of the brake system can be ensured when the brake radius and radial stiffness are sufficient.

Originality/value

The influence of tangential stiffness of pad on stability of the brake system has been researched for decades. The insufficiency of stiffness in radial direction may also generate certain levels of instabilities but has not been fully investigated by modelling approach. This paper reveals that this parameter is also strongly correlated to nonlinear vibration of the brake pad.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2013

Gang Chen, Wei‐gong Zhang and Xiao‐na Zhang

The paper aims to overcome the shortcomings that proportional‐integral‐derivative (PID) control for unmanned robot applied to automotive test (URAT) needs a priori manual…

Abstract

Purpose

The paper aims to overcome the shortcomings that proportional‐integral‐derivative (PID) control for unmanned robot applied to automotive test (URAT) needs a priori manual retuning, has large speed fluctuations and is hard to adjust control parameters. A novel control approach based on fuzzy neural network applied to URAT was proposed.

Design/methodology/approach

According to the target vehicle speed and driving command table, the multiple manipulator coordinated control model was established. After that, the displacement of throttle mechanical leg, clutch mechanical leg, brake mechanical leg and shift mechanical arm for URAT was used as input of fuzzy neural network (FNN) model, and vehicle speed was used as output of FNN model. The number of membership functions was three, and the type of that was generalized bell membership function (gbellmf). The hybrid learning algorithm which combined with back propagation algorithm and least square method was applied to train the model. The Sugeno model was selected as fuzzy reasoning model.

Findings

Experimental results demonstrated that compared with PID control method, the proposed approach can greatly improve the accuracy of vehicle speed tracking. The approach can accurately realize the vehicle speed tracking of given driving test cycle. Therefore, it can ensure the accuracy and effectiveness of automotive test results.

Research limitations/implications

Future work will focus on improving the efficiency of this learning algorithm.

Practical implications

The paper provides effective methods for improving the accuracy of speed tracking and repeatability.

Originality/value

After establishing the multiple manipulator coordinated control model, this paper proposes a novel control approach based on FNN for URAT.

Details

Industrial Robot: An International Journal, vol. 40 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 October 2023

Youjie Chen, Rong Fu, Junying Yang, En Zhang, Linlin Su and Fei Gao

This study aims to clarify the relationship between the coefficient of friction (COF) and temperature of aluminum-based brake discs.

Abstract

Purpose

This study aims to clarify the relationship between the coefficient of friction (COF) and temperature of aluminum-based brake discs.

Design/methodology/approach

Three friction blocks with different COFs are examined by a TM-I-type reduced-scale inertial braking dynamometer. On this basis, the thermo-mechanically coupled model of friction pairs is established to study the evolution of brake disc temperature under different COFs using ADINA software.

Findings

Results indicate that the calculated disc temperature field matches the experimental well. The effect of COF on the peak temperature is magnified by the braking speed. With the COF increasing, the rise rate of instantaneous peak temperature is accelerated, and the dynamic equilibrium period and cooling-down period are observed in advance. The increase in COF promotes the area ratio of the high-temperature zone and the maximum radial temperature difference. When the COF is increased from 0.245 to 0.359 and 0.434 at 140 km/h, the area ratio of high-temperature zone increases from 12% to 44% and 49% and the maximum radial temperature difference increases from 56°C to 75°C and 83°C. The sensitiveness of the axial temperature difference to the COF is related to the braking time. The maximum axial temperature difference increases with COF in the early stages of braking, while it is hardly sensitive to the COF in the later stages of braking.

Originality/value

The effect of COF on the aluminum-based brake disc temperature is revealed, providing a theoretical reference for the popularization of aluminum-based brake discs and the selection of matching brake pads.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 1999

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers…

4353

Abstract

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers, brakes, gears, bearings, gaskets and seals are handled. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of this paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An Appendix included at the end of the paper presents a bibliography on finite element applications in the analysis/design of machine elements for 1977‐1997.

Details

Engineering Computations, vol. 16 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 14 November 2023

Leiting Zhao, Kan Liu, Donghui Liu and Zheming Jin

This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking…

Abstract

Purpose

This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor (BR) onboard the vehicle, which overcomes the vulnerability of having conventional temperature sensor.

Design/methodology/approach

In this study, the energy model based sensorless estimation method is developed. By analyzing the structure and the convection dissipation process of the BR onboard the vehicle, the energy-based operational temperature model of the BR and its cooling domain is established. By adopting Newton's law of cooling and the law of conservation of energy, the energy and temperature dynamic of the BR can be stated. To minimize the use of all kinds of sensors (including both thermal and electrical), a novel regenerative braking power calculation method is proposed, which involves only the voltage of DC traction network and the duty cycle of the chopping circuit; both of them are available for the traction control unit (TCU) of the vehicle. By utilizing a real-time iterative calculation and updating the parameter of the energy model, the operational temperature of the BR can be obtained and monitored in a sensorless manner.

Findings

In this study, a sensorless estimation/monitoring method of the operational temperature of BR is proposed. The results show that it is possible to utilize the existing electrical sensors that is mandatory for the traction unit’s operation to estimate the operational temperature of BR, instead of adding dedicated thermal sensors. The results also validate the effectiveness of the proposal is acceptable for the engineering practical.

Originality/value

The proposal of this study provides novel concepts for the sensorless operational temperature monitoring of BR onboard rolling stocks. The proposed method only involves quasi-global electrical variable and the internal control signal within the TCU.

Article
Publication date: 2 December 2022

Jingyu Cao, Jiusheng Bao, Yan Yin, Wang Yao, Tonggang Liu and Ting Cao

To avoid braking accidents caused by excessive wear of brake pad, this study aims to achieve online prediction of brake pad wear life (BPWL).

Abstract

Purpose

To avoid braking accidents caused by excessive wear of brake pad, this study aims to achieve online prediction of brake pad wear life (BPWL).

Design/methodology/approach

A simulated braking test bench for automobile disc brake was used. The correlation and mechanism between the three braking condition parameters of initial braking speed, braking pressure and initial braking temperature and the tribological performance were analyzed. The different artificial neural network (ANN) models of wear loss were discussed. Genetic algorithm was used to optimize the ANN model. The structure scheme of the online prediction system of BPWL was discussed and completed.

Findings

The results showed that the braking conditions were positively correlated with the wear loss, but negatively correlated with the friction coefficient. The prediction accuracy of back propagation (BP) ANN model was higher. The model was optimized by genetic algorithm, and the average deviation of prediction results was 4.67%. By constructing the online monitoring system of automobile braking conditions, the online prediction of BPWL based on the ANN model could be realized.

Originality/value

The research results not only have important theoretical significance for the study of BPWL but also have practical value for guiding the maintenance and replacement of automobile brake pads and avoiding the occurrence of braking accidents.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 2000