Search results

1 – 10 of 25
Article
Publication date: 6 July 2023

Xiaodan Zhang, Zhanbo Zhao and Kui Wang

This study aims to examine the moment-to-moment (MTM) effects of in-consumption dynamic comments on consumers' responses to digital engagement and the underlying mechanisms…

Abstract

Purpose

This study aims to examine the moment-to-moment (MTM) effects of in-consumption dynamic comments on consumers' responses to digital engagement and the underlying mechanisms involved, as well as the interactive role of advertisements embedded in short-form online video.

Design/methodology/approach

This study uses data extracted from 2,081 videos posted on the prominent Chinese online live platform, Bilibili. The hypotheses are tested using regression models and natural language processing.

Findings

The results indicate that the intensity of live comments at the beginning negatively affects users' digital engagement, while a corresponding increase in live comments at the end elicits a positive effect. A linear trend and peak difference in live comments intensity positively affect digital engagement, while the variability of live comment intensity exerts a negative effect. These MTM effects were driven by sentiments of live comments. Furthermore, in-video advertisements are likely to amplify the negative beginning effect on users' digital engagement and mitigate the negative variability of live comments.

Originality/value

This study is the first to examine the direct effects of MTM comments from the online temporal sequence perspective, differentiating the process- and performance-based engagement. The mechanism and interactive role of in-video advertisements were identified. These findings contribute to literature on interactive marketing and provide valuable guidance for influencer marketing.

Details

Journal of Research in Interactive Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-7122

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 May 2023

Bassam Abdallah, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical…

41

Abstract

Purpose

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical properties. The aim of this work was depositing NbN thin films on two types of substrates (stainless steel (SS304) and silicon (100)) using plasma technique at varied powers (100–150 W).

Design/methodology/approach

DC magnetron sputtering technique at different powers were used to synthesis NbN films. Film structure was studied using X-ray diffraction (XRD) pattern. Rutherford elastic backscattering and energy dispersive X-ray were used to examine the deposited film composition. The films morphology was studied via atomic force microscopy and scanning electron microscopy images. Corrosion resistance of the three NbN/SS304 films was studied in 0.9% NaCl environment (physiological standard saline).

Findings

All properties could be controlled by the modification of DC power, where the crystallinity of samples was changed and consequently the corrosion and microhardness were modified, which correlated with the power. NbN film deposited at higher power (150 W) has shown better corrosion resistance (0.9% NaCl), which had smaller grain size (smoother) and was thicker.

Originality/value

The NbN films have a preferred orientation (111) matching to cubic structure phase. Corrosion resistance was enhanced for the NbN films compared to SS304 substrates (noncoating). Therefore, NbN films deposited on SS304 substrate could be applied as medicinal tools as well as in mechanical fields.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 March 2024

Ahmed EL Hana, Ahmed Hader, Jaouad Ait Lahcen, Salma Moushi, Yassine Hariti, Iliass Tarras, Rachid Et Touizi and Yahia Boughaleb

The purpose of the paper is to conduct a numerical and experimental investigation into the properties of nanofluids containing spherical nanoparticles of random sizes flowing…

Abstract

Purpose

The purpose of the paper is to conduct a numerical and experimental investigation into the properties of nanofluids containing spherical nanoparticles of random sizes flowing through a porous medium. The study aims to understand how the thermophysical properties of the nanofluid are affected by factors such as nanoparticle volume fraction, permeability of the porous medium, and pore size. The paper provides insights into the behavior of nanofluids in complex environments and explores the impact of varying conditions on key properties such as thermal conductivity, density, viscosity, and specific heat. Ultimately, the research contributes to the broader understanding of nanofluid dynamics and has potential implications for engineering and industrial applications in porous media.

Design/methodology/approach

This paper investigates nanofluids with spherical nanoparticles in a porous medium, exploring thermal conductivity, density, specific heat, and dynamic viscosity. Studying three compositions, the analysis employs the classical Maxwell model and Koo and Kleinstreuer’s approach for thermal conductivity, considering particle shape and temperature effects. Density and specific heat are defined based on mass and volume ratios. Dynamic viscosity models, including Brinkman’s and Gherasim et al.'s, are discussed. Numerical simulations, implemented in Python using the Langevin model, yield results processed in Origin Pro. This research enhances understanding of nanofluid behavior, contributing valuable insights to porous media applications.

Findings

This study involves a numerical examination of nanofluid properties, featuring spherical nanoparticles of varying sizes suspended in a base fluid with known density, flowing through a porous medium. Experimental findings reveal a notable increase in thermal conductivity, density, and viscosity as the volume fraction of particles rises. Conversely, specific heat experiences a decrease with higher particle volume concentration.xD; xA; The influence of permeability and pore size on particle volume fraction variation is a key focus. Interestingly, while the permeability of the medium has a significant effect, it is observed that it increases with permeability. This underscores the role of the medium’s nature in altering the thermophysical properties of nanofluids.

Originality/value

This paper presents a novel numerical study on nanofluids with randomly sized spherical nanoparticles flowing in a porous medium. It explores the impact of porous medium properties on nanofluid thermophysical characteristics, emphasizing the significance of permeability and pore size. The inclusion of random nanoparticle sizes adds practical relevance. Contrasting trends are observed, where thermal conductivity, density, and viscosity increase with particle volume fraction, while specific heat decreases. These findings offer valuable insights for engineering applications, providing a deeper understanding of nanofluid behavior in porous environments and guiding the design of efficient systems in various industrial contexts.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 November 2023

Min Guo, Naiding Yang, Jingbei Wang, Hui Liu and Fawad Sharif Sayed Muhammad

Previous research has analyzed the consequence of network stability; however, little is known about how partner type diversity influence network stability in R&D network. Based on…

Abstract

Purpose

Previous research has analyzed the consequence of network stability; however, little is known about how partner type diversity influence network stability in R&D network. Based on knowledge-based view and social network theory, the purpose of this paper is to unravel the internal mechanisms between partner type diversity and network stability through the mediating role of knowledge recombination in R&D network.

Design/methodology/approach

The authors collected an unbalanced panel patent data set from information communication technology industry for the period 1994–2016. Then, the authors tested the different dimensions of partner type variety and its relevance in the R&D network and the mediating role of knowledge recombination through adopting the multiple linear regression.

Findings

Results indicate an inverted U-shaped relationship between partner type diversity (variety and relevance) and network stability, whereas knowledge recombination partially mediate these relationships.

Originality/value

From the perspective of R&D networks, this paper explores that there are the under-researched phenomena the antecedent of network stability through nodal attributes (i.e. partner type variety and partner type relevance). Moreover, this paper empirically examined the mediating role of knowledge recombination in the partner type diversity–network stability relationships. The novel perspective allows focal firm to recognize importance of nodal attributes, which are critical to fully excavate the potential capabilities of cooperating partners in R&D network.

Details

Journal of Knowledge Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1367-3270

Keywords

Open Access
Article
Publication date: 14 April 2023

Gideon Daniel Joubert and Atanda Kamoru Raji

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this…

Abstract

Purpose

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this study aims to develop an adaptable grid code-guided renewable power plant (RPP) control real-time simulation testbed, tailored to South African grid code requirements to study grid-integrated RE’s behaviour concerning South Africa’s unique conditions.

Design/methodology/approach

The testbed is designed using MATLAB’s Simulink and live script environments, to create an adaptable model where grid, RPP and RPP guiding grid codes are tailorable. This model is integrated with OPAL-RT’s RT-LAB and brought to real-time simulation using OPAL-RT’s OP4510 simulator. Voltage, frequency and short-circuit event case studies are performed through which the testbed’s abilities and performance are assessed.

Findings

Case study results show the following. The testbed accurately represents grid code voltage and frequency requirements. RPP point of connection (POC) conditions are consistently recognized and tracked, according to which the testbed then operates simulated RPPs, validating its design. Short-circuit event simulations show the simulated wind farm supports POC conditions relative to short-circuit intensity by curtailing active power in favour of reactive power, in line with local grid code requirements.

Originality/value

To the best of the authors’ knowledge, this is the first design of an adaptable grid code-guided RPP control testbed, tailored to South African grid code requirements in line with which RPP behavioural and grid integration studies can be performed.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 12 April 2024

Aleš Zebec and Mojca Indihar Štemberger

Although businesses continue to take up artificial intelligence (AI), concerns remain that companies are not realising the full value of their investments. The study aims to…

Abstract

Purpose

Although businesses continue to take up artificial intelligence (AI), concerns remain that companies are not realising the full value of their investments. The study aims to provide insights into how AI creates business value by investigating the mediating role of Business Process Management (BPM) capabilities.

Design/methodology/approach

The integrative model of IT Business Value was contextualised, and structural equation modelling was applied to validate the proposed serial multiple mediation model using a sample of 448 organisations based in the EU.

Findings

The results validate the proposed serial multiple mediation model according to which AI adoption increases organisational performance through decision-making and business process performance. Process automation, organisational learning and process innovation are significant complementary partial mediators, thereby shedding light on how AI creates business value.

Research limitations/implications

In pursuing a complex nomological framework, multiple perspectives on realising business value from AI investments were incorporated. Several moderators presenting complementary organisational resources (e.g. culture, digital maturity, BPM maturity) could be included to identify behaviour in more complex relationships. The ethical and moral issues surrounding AI and its use could also be examined.

Practical implications

The provided insights can help guide organisations towards the most promising AI activities of process automation with AI-enabled decision-making, organisational learning and process innovation to yield business value.

Originality/value

While previous research assumed a moderated relationship, this study extends the growing literature on AI business value by empirically investigating a comprehensive nomological network that links AI adoption to organisational performance in a BPM setting.

Details

Business Process Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal…

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Zuraihana Bachok, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani, Mohamad Riduwan Ramli and Muhamed Abdul Fatah bin Muhamed Mukhtar

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Abstract

Purpose

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Design/methodology/approach

Specimens of the capacitor assembly were subjected to JEDEC level 1 preconditioning (85 °C/85%RH/168 h) with 5× reflow at 270°C peak temperature. Then, they were inspected using a 2 µm scanning electron microscope to investigate the evidence of defects. The reliability test was also numerically simulated and analyzed using the extended finite element method implemented in ABAQUS.

Findings

Excellent agreements were observed between the SEM inspections and the simulation results. The findings showed evidence of discontinuities along the Cu and the Cu-epoxy layers and interfacial delamination crack at the Cu/Cu-epoxy interface. The possible root causes are thermal mismatch between the Cu and Cu-epoxy layers, moisture contamination and weak Cu/Cu-epoxy interface. The maximum crack length observed in the experimentally reflowed capacitor was measured as 75 µm, a 2.59% difference compared to the numerical prediction of 77.2 µm.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time in investigating reliability issues in MLCCs.

Originality/value

Despite the significant number of works on the reliability assessment of surface mount capacitors, work on crack growth in soft-termination MLCC is limited. Also, the combined experimental and numerical investigation of reflow-induced reliability issues in soft-termination MLCC is limited. These cited gaps are the novelties of this study.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 25