Search results

1 – 2 of 2
Open Access
Article
Publication date: 22 March 2024

Ambra Galeazzo, Andrea Furlan, Diletta Tosetto and Andrea Vinelli

We studied the relationship between job engagement and systematic problem solving (SPS) among shop-floor employees and how lean production (LP) and Internet of Things (IoT…

Abstract

Purpose

We studied the relationship between job engagement and systematic problem solving (SPS) among shop-floor employees and how lean production (LP) and Internet of Things (IoT) systems moderate this relationship.

Design/methodology/approach

We collected data from a sample of 440 shop floor workers in 101 manufacturing work units across 33 plants. Because our data is nested, we employed a series of multilevel regression models to test the hypotheses. The application of IoT systems within work units was evaluated by our research team through direct observations from on-site visits.

Findings

Our findings indicate a positive association between job engagement and SPS. Additionally, we found that the adoption of lean bundles positively moderates this relationship, while, surprisingly, the adoption of IoT systems negatively moderates this relationship. Interestingly, we found that, when the adoption of IoT systems is complemented by a lean management system, workers tend to experience a higher effect on the SPS of their engagement.

Research limitations/implications

One limitation of this research is the reliance on the self-reported data collected from both workers (job engagement, SPS and control variables) and supervisors (lean bundles). Furthermore, our study was conducted in a specific country, Italy, which might have limitations on the generalizability of the results since cross-cultural differences in job engagement and SPS have been documented.

Practical implications

Our findings highlight that employees’ strong engagement in SPS behaviors is shaped by the managerial and technological systems implemented on the shop floor. Specifically, we point out that implementing IoT systems without the appropriate managerial practices can pose challenges to fostering employee engagement and SPS.

Originality/value

This paper provides new insights on how lean and new technologies contribute to the development of learning-to-learn capabilities at the individual level by empirically analyzing the moderating effects of IoT systems and LP on the relationship between job engagement and SPS.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 19 April 2022

D. Divya, Bhasi Marath and M.B. Santosh Kumar

This study aims to bring awareness to the developing of fault detection systems using the data collected from sensor devices/physical devices of various systems for predictive…

1613

Abstract

Purpose

This study aims to bring awareness to the developing of fault detection systems using the data collected from sensor devices/physical devices of various systems for predictive maintenance. Opportunities and challenges in developing anomaly detection algorithms for predictive maintenance and unexplored areas in this context are also discussed.

Design/methodology/approach

For conducting a systematic review on the state-of-the-art algorithms in fault detection for predictive maintenance, review papers from the years 2017–2021 available in the Scopus database were selected. A total of 93 papers were chosen. They are classified under electrical and electronics, civil and constructions, automobile, production and mechanical. In addition to this, the paper provides a detailed discussion of various fault-detection algorithms that can be categorised under supervised, semi-supervised, unsupervised learning and traditional statistical method along with an analysis of various forms of anomalies prevalent across different sectors of industry.

Findings

Based on the literature reviewed, seven propositions with a focus on the following areas are presented: need for a uniform framework while scaling the number of sensors; the need for identification of erroneous parameters; why there is a need for new algorithms based on unsupervised and semi-supervised learning; the importance of ensemble learning and data fusion algorithms; the necessity of automatic fault diagnostic systems; concerns about multiple fault detection; and cost-effective fault detection. These propositions shed light on the unsolved issues of predictive maintenance using fault detection algorithms. A novel architecture based on the methodologies and propositions gives more clarity for the reader to further explore in this area.

Originality/value

Papers for this study were selected from the Scopus database for predictive maintenance in the field of fault detection. Review papers published in this area deal only with methods used to detect anomalies, whereas this paper attempts to establish a link between different industrial domains and the methods used in each industry that uses fault detection for predictive maintenance.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 2 of 2