Search results

1 – 10 of 41
Article
Publication date: 3 November 2022

Shashi Kant Ratnakar, Utpal Kiran and Deepak Sharma

Structural topology optimization is computationally expensive due to the involvement of high-resolution mesh and repetitive use of finite element analysis (FEA) for computing the…

151

Abstract

Purpose

Structural topology optimization is computationally expensive due to the involvement of high-resolution mesh and repetitive use of finite element analysis (FEA) for computing the structural response. Since FEA consumes most of the computational time in each optimization iteration, a novel GPU-based parallel strategy for FEA is presented and applied to the large-scale structural topology optimization of 3D continuum structures.

Design/methodology/approach

A matrix-free solver based on preconditioned conjugate gradient (PCG) method is proposed to minimize the computational time associated with solution of linear system of equations in FEA. The proposed solver uses an innovative strategy to utilize only symmetric half of elemental stiffness matrices for implementation of the element-by-element matrix-free solver on GPU.

Findings

Using solid isotropic material with penalization (SIMP) method, the proposed matrix-free solver is tested over three 3D structural optimization problems that are discretized using all hexahedral structured and unstructured meshes. Results show that the proposed strategy demonstrates 3.1× –3.3× speedup for the FEA solver stage and overall speedup of 2.9× –3.3× over the standard element-by-element strategy on the GPU. Moreover, the proposed strategy requires almost 1.8× less GPU memory than the standard element-by-element strategy.

Originality/value

The proposed GPU-based matrix-free element-by-element solver takes a more general approach to the symmetry concept than previous works. It stores only symmetric half of the elemental matrices in memory and performs matrix-free sparse matrix-vector multiplication (SpMV) without any inter-thread communication. A customized data storage format is also proposed to store and access only symmetric half of elemental stiffness matrices for coalesced read and write operations on GPU over the unstructured mesh.

Details

Engineering Computations, vol. 39 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2016

Andrew Gavin Bradford Mowat, Wilhelm Johann van den Bergh, Arnaud George Malan and Daniel Wilke

An area of great interest in current computational fluid dynamics research is that of free-surface modelling (FSM). Semi-implicit pressure-based FSM flow solvers typically involve…

Abstract

Purpose

An area of great interest in current computational fluid dynamics research is that of free-surface modelling (FSM). Semi-implicit pressure-based FSM flow solvers typically involve the solution of a pressure correction equation. The latter being computationally intensive, the purpose of this paper is to involve the implementation and enhancement of an algebraic multigrid (AMG) method for its solution.

Design/methodology/approach

All AMG components were implemented via object-oriented C++ in a manner which ensures linear computational scalability and matrix-free storage. The developed technology was evaluated in two- and three-dimensions via application to a dam-break test case.

Findings

AMG performance was assessed via comparison of CPU cost to that of several other competitive sparse solvers. The standard AMG implementation proved inferior to other methods in three-dimensions, while the developed Freeze version achieved significant speed-ups and proved to be superior throughout.

Originality/value

A so-called Freeze method was developed to address the computational overhead resulting from the dynamically changing coefficient matrix. The latter involves periodic AMG setup steps in a manner that results in a robust and efficient black-box solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2013

Fausto Arpino, Nicola Massarotti, Alessandro Mauro and Perumal Nithiarasu

The purpose of the paper is to numerically simulate steady‐state thermo‐solutal convection in rectangular cavities with different aspect ratios, subject to horizontal temperature…

Abstract

Purpose

The purpose of the paper is to numerically simulate steady‐state thermo‐solutal convection in rectangular cavities with different aspect ratios, subject to horizontal temperature and concentration gradients, and validate the results against numerical and experimental data available from literature.

Design/methodology/approach

The fully explicit Artificial Compressibility (AC) version of the Characteristic Based Split (CBS) scheme is adopted to solve double diffusion (DD) problems. A stabilization analysis is carried out to efficiently solve the problems considered in the present work. The thermal and solutal buoyancy forces acting on the fluid have been taken into account in case of aiding and opposing flow conditions.

Findings

The stability limits derived by the authors for the thermo‐solutal convection assume a fundamental role to efficiently solve the DD problems considered. In the cases characterized by higher Rayleigh number the convergent solution is obtained only by employing the new stability conditions. The efficient matrix free procedure employed is a powerful tool to study complex DD problems.

Originality/value

In this paper, the authors extend the stabilization analysis for the AC‐CBS scheme to the solution of DD, fundamental to efficiently solve the present problems, and apply the present fully explicit matrix free scheme, based on finite elements, to the solution of DD natural convection in cavities.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2002

Johan Driesen and Kay Hameyer

A general framework for the application of the Newton methods in non‐linear coupled electromagnetic‐thermal problems solved with the FEM on independent subproblem meshes is…

Abstract

A general framework for the application of the Newton methods in non‐linear coupled electromagnetic‐thermal problems solved with the FEM on independent subproblem meshes is presented. The explicit derivation of the Jacobian matrix is outlined and discussed. A matrix‐free quasi‐Newton method, to be used along with linear system solvers built around Jacobian‐vector products is presented. This method does not require explicit derivatives and can be parallelised. The numerical aspects of these methods are discussed. The different Newton methods are demonstrated using a steady‐state conductive heating example problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 June 2018

Ali Karakus, Tim Warburton, Mehmet Haluk Aksel and Cuneyt Sert

This study aims to focus on the development of a high-order discontinuous Galerkin method for the solution of unsteady, incompressible, multiphase flows with level set interface…

Abstract

Purpose

This study aims to focus on the development of a high-order discontinuous Galerkin method for the solution of unsteady, incompressible, multiphase flows with level set interface formulation.

Design/methodology/approach

Nodal discontinuous Galerkin discretization is used for incompressible Navier–Stokes, level set advection and reinitialization equations on adaptive unstructured elements. Implicit systems arising from the semi-explicit time discretization of the flow equations are solved with a p-multigrid preconditioned conjugate gradient method, which minimizes the memory requirements and increases overall run-time performance. Computations are localized mostly near the interface location to reduce computational cost without sacrificing the accuracy.

Findings

The proposed method allows to capture interface topology accurately in simulating wide range of flow regimes with high density/viscosity ratios and offers good mass conservation even in relatively coarse grids, while keeping the simplicity of the level set interface modeling. Efficiency, local high-order accuracy and mass conservation of the method are confirmed through distinct numerical test cases of sloshing, dam break and Rayleigh–Taylor instability.

Originality/value

A fully discontinuous Galerkin, high-order, adaptive method on unstructured grids is introduced where flow and interface equations are solved in discontinuous space.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 October 2012

Rhodri L.T. Bevan, Roland W. Lewis and Perumal Nithiarasu

The purpose of this paper is to numerically model forced convection heat transfer within a patient‐specific carotid bifurcation and to examine the relationship between the…

Abstract

Purpose

The purpose of this paper is to numerically model forced convection heat transfer within a patient‐specific carotid bifurcation and to examine the relationship between the temperature and wall shear stress.

Design/methodology/approach

The procedure employs a parallel, fully explicit (matrix free) characteristic based split scheme for the solution of incompressible Navier‐Stokes equations.

Findings

The arterial wall temperature, rather than the blood temperature dominates the regions of low wall shear stress and high oscillating shear stress. Additionally, negligible temperature gradient was detected proximal to the arterial wall in this locality.

Originality/value

The presented results demonstrate a possible mechanism for cold air temperature to influence the atherosclerotic plaque region proximal to the stenosis. The proposed patient‐specific heat transfer analysis also provides a starting point for the investigation of the influence of induced hypothermia on carotid plaque and its stability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 March 2008

P. Nithiarasu

This paper aims to present briefly a unified fractional step method for fluid dynamics, incompressible solid mechanics and heat transfer calculations. The proposed method is…

Abstract

Purpose

This paper aims to present briefly a unified fractional step method for fluid dynamics, incompressible solid mechanics and heat transfer calculations. The proposed method is demonstrated by solving compressible and incompressible flows, solid mechanics and conjugate heat transfer problems.

Design/methodology/approach

The finite element method is used for the spatial discretization of the equations. The fluid dynamics algorithm used is often referred to as the characteristic‐based split scheme.

Findings

The proposed method can be employed as a unified approach to fluid dynamics, heat transfer and solid mechanics problems.

Originality/value

The idea of using a unified approach to fluid dynamics and incompressible solid mechanics problems is proposed. The proposed approach will be valuable in complicated engineering problems such as fluid‐structure interaction and problems involving conjugate heat transfer and thermal stresses.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2021

Abubakar Sani Halilu, Arunava Majumder, Mohammed Yusuf Waziri, Kabiru Ahmed and Aliyu Muhammed Awwal

The purpose of this research is to propose a new choice of nonnegative parameter t in Dai–Liao conjugate gradient method.

58

Abstract

Purpose

The purpose of this research is to propose a new choice of nonnegative parameter t in Dai–Liao conjugate gradient method.

Design/methodology/approach

Conjugate gradient algorithms are used to solve both constrained monotone and general systems of nonlinear equations. This is made possible by combining the conjugate gradient method with the Newton method approach via acceleration parameter in order to present a derivative-free method.

Findings

A conjugate gradient method is presented by proposing a new Dai–Liao nonnegative parameter. Furthermore the proposed method is successfully applied to handle the application in motion control of the two joint planar robotic manipulators.

Originality/value

The proposed algorithm is a new approach that will not either submitted or publish somewhere.

Article
Publication date: 3 May 2016

Rhodri LT Bevan, Etienne Boileau, Raoul van Loon, R.W. Lewis and P Nithiarasu

The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not…

Abstract

Purpose

The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared.

Design/methodology/approach

This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split.

Findings

In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations.

Originality/value

A comprehensive comparison between three versions of the CBS method is provided for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 July 2010

C.‐B. Liu, P. Nithiarasu and P.G. Tucker

The purpose of this paper is to numerically solve Eikonal and Hamilton‐Jacobi equations using the finite element method; to use both explicit Taylor Galerkin (TG) and implicit…

Abstract

Purpose

The purpose of this paper is to numerically solve Eikonal and Hamilton‐Jacobi equations using the finite element method; to use both explicit Taylor Galerkin (TG) and implicit methods to obtain shortest wall distances; to demonstrate the implemented methods on some realistic problems; and to use iterative generalized minimal residual method (GMRES) method in the solution of the equations.

Design/methodology/approach

The finite element method along with both the explicit and implicit time discretisations is employed. Two different forms of governing equations are also employed in the solution. The Eikonal equation in its original form is used in the explicit Taylor Galerkin discretisation to save computational time. For implicit method, however, the convection‐diffusion form in its conservation form is used to maintain spatial stability.

Findings

The finite element solution obtained is both accurate and smooth. As expected the implicit method is much faster than the explicit method. Though the proposed finite element solution procedures in serial is slower than the standard search procedure, they are suitable to be used in a parallel environment.

Originality/value

The finite element procedure for Eikonal and Hamilton‐Jacobi equations are attempted for the first time. Though the finite volume and finite difference‐based computational fluid dynamics (CFD) solvers have started employing differential equations for wall distance calculations, it is not common for finite element solvers to use such wall distance calculations. The results presented here clearly show that the proposed methods are suitable for unstructured meshes and finite element solvers.

Details

Engineering Computations, vol. 27 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 41