Search results

1 – 10 of over 4000
Content available
Book part
Publication date: 16 September 2022

Pedro Brinca, Nikolay Iskrev and Francesca Loria

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of

Abstract

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of such exercises and to methodological departures from the baseline methodology. Little attention has been paid to identification issues within these classes of models. In this chapter, the authors investigate whether such issues are of concern in the original methodology and in an extension proposed by Šustek (2011) called Monetary Business Cycle Accounting. The authors resort to two types of identification tests in population. One concerns strict identification as theorized by Komunjer and Ng (2011) while the other deals both with strict and weak identification as in Iskrev (2010). Most importantly, the authors explore the extent to which these weak identification problems affect the main economic takeaways and find that the identification deficiencies are not relevant for the standard BCA model. Finally, the authors compute some statistics of interest to practitioners of the BCA methodology.

Details

Essays in Honour of Fabio Canova
Type: Book
ISBN: 978-1-80382-636-3

Keywords

Open Access
Article
Publication date: 31 July 2020

Kalyan Sinha

A matrix is a Q…

Abstract

A matrix is a Q0-matrix if for every k{1,2,,n}, the sum of all k×k principal minors is nonnegative. In this paper, we study some necessary and sufficient conditions for a digraph to have Q0-completion. Later on we discuss the relationship between Q and Q0-matrix completion problem. Finally, a classification of the digraphs of order up to four is done based on Q0-completion.

Details

Arab Journal of Mathematical Sciences, vol. 27 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 29 July 2019

Ren Yang, Qi Song and Pu Chen

The purpose of this paper is to establish and implement a direct topological reanalysis algorithm for general successive structural modifications, based on the updating matrix

Abstract

Purpose

The purpose of this paper is to establish and implement a direct topological reanalysis algorithm for general successive structural modifications, based on the updating matrix triangular factorization (UMTF) method for non-topological modification proposed by Song et al. [Computers and Structures, 143(2014):60-72].

Design/methodology/approach

In this method, topological modifications are viewed as a union of symbolic and numerical change of structural matrices. The numerical part is dealt with UMTF by directly updating the matrix triangular factors. For symbolic change, an integral structure which consists of all potential nodes/elements is introduced to avoid side effects on the efficiency during successive modifications. Necessary pre- and post processing are also developed for memory-economic matrix manipulation.

Findings

The new reanalysis algorithm is applicable to successive general structural modifications for arbitrary modification amplitudes and locations. It explicitly updates the factor matrices of the modified structure and thus guarantees the accuracy as full direct analysis while greatly enhancing the efficiency.

Practical implications

Examples including evolutionary structural optimization and sequential construction analysis show the capability and efficiency of the algorithm.

Originality/value

This innovative paper makes direct topological reanalysis be applicable for successive structural modifications in many different areas.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 21 July 2023

M. Neumayer, T. Suppan, T. Bretterklieber, H. Wegleiter and Colin Fox

Nonlinear solution approaches for inverse problems require fast simulation techniques for the underlying sensing problem. In this work, the authors investigate finite element (FE…

Abstract

Purpose

Nonlinear solution approaches for inverse problems require fast simulation techniques for the underlying sensing problem. In this work, the authors investigate finite element (FE) based sensor simulations for the inverse problem of electrical capacitance tomography. Two known computational bottlenecks are the assembly of the FE equation system as well as the computation of the Jacobian. Here, existing computation techniques like adjoint field approaches require additional simulations. This paper aims to present fast numerical techniques for the sensor simulation and computations with the Jacobian matrix.

Design/methodology/approach

For the FE equation system, a solution strategy based on Green’s functions is derived. Its relation to the solution of a standard FE formulation is discussed. A fast stiffness matrix assembly based on an eigenvector decomposition is shown. Based on the properties of the Green’s functions, Jacobian operations are derived, which allow the computation of matrix vector products with the Jacobian for free, i.e. no additional solves are required. This is demonstrated by a Broyden–Fletcher–Goldfarb–Shanno-based image reconstruction algorithm.

Findings

MATLAB-based time measurements of the new methods show a significant acceleration for all calculation steps compared to reference implementations with standard methods. E.g. for the Jacobian operations, improvement factors of well over 100 could be found.

Originality/value

The paper shows new methods for solving known computational tasks for solving inverse problems. A particular advantage is the coherent derivation and elaboration of the results. The approaches can also be applicable to other inverse problems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 13 October 2022

Linzi Wang, Qiudan Li, Jingjun David Xu and Minjie Yuan

Mining user-concerned actionable and interpretable hot topics will help management departments fully grasp the latest events and make timely decisions. Existing topic models…

379

Abstract

Purpose

Mining user-concerned actionable and interpretable hot topics will help management departments fully grasp the latest events and make timely decisions. Existing topic models primarily integrate word embedding and matrix decomposition, which only generates keyword-based hot topics with weak interpretability, making it difficult to meet the specific needs of users. Mining phrase-based hot topics with syntactic dependency structure have been proven to model structure information effectively. A key challenge lies in the effective integration of the above information into the hot topic mining process.

Design/methodology/approach

This paper proposes the nonnegative matrix factorization (NMF)-based hot topic mining method, semantics syntax-assisted hot topic model (SSAHM), which combines semantic association and syntactic dependency structure. First, a semantic–syntactic component association matrix is constructed. Then, the matrix is used as a constraint condition to be incorporated into the block coordinate descent (BCD)-based matrix decomposition process. Finally, a hot topic information-driven phrase extraction algorithm is applied to describe hot topics.

Findings

The efficacy of the developed model is demonstrated on two real-world datasets, and the effects of dependency structure information on different topics are compared. The qualitative examples further explain the application of the method in real scenarios.

Originality/value

Most prior research focuses on keyword-based hot topics. Thus, the literature is advanced by mining phrase-based hot topics with syntactic dependency structure, which can effectively analyze the semantics. The development of syntactic dependency structure considering the combination of word order and part-of-speech (POS) is a step forward as word order, and POS are only separately utilized in the prior literature. Ignoring this synergy may miss important information, such as grammatical structure coherence and logical relations between syntactic components.

Details

Journal of Electronic Business & Digital Economics, vol. 1 no. 1/2
Type: Research Article
ISSN: 2754-4214

Keywords

Open Access
Article
Publication date: 5 April 2023

Edoardo Ballico

The author studies forms over finite fields obtained as the determinant of Hermitian matrices and use these determinatal forms to define and study the base polynomial of a square…

Abstract

Purpose

The author studies forms over finite fields obtained as the determinant of Hermitian matrices and use these determinatal forms to define and study the base polynomial of a square matrix over a finite field.

Design/methodology/approach

The authors give full proofs for the new results, quoting previous works by other authors in the proofs. In the introduction, the authors quoted related references.

Findings

The authors get a few theorems, mainly describing some monic polynomial arising as a base polynomial of a square matrix.

Originality/value

As far as the author knows, all the results are new, and the approach is also new.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 21 March 2024

Hedi Khedhiri and Taher Mkademi

In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.

Abstract

Purpose

In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.

Design/methodology/approach

We introduce and investigate the complex space HC consisting of all 2 × 2 complex matrices of the form ξ=z1+iw1z2+iw2z2iw2z1+iw1, (z1,w1,z2,w2)C4.

Findings

We develop on HC a new matrix holomorphic structure for which we provide the fundamental operational calculus properties.

Originality/value

We give sufficient and necessary conditions in terms of Cauchy–Riemann type quaternionic differential equations for holomorphicity of a function of one complex matrix variable ξHC. In particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 2 December 2020

Peter Madzík and Arash Shahin

The purpose of this study is to present and explain a new customer segmentation approach inspired by failure mode and effect analysis (FMEA) which can help classify customers into…

4803

Abstract

Purpose

The purpose of this study is to present and explain a new customer segmentation approach inspired by failure mode and effect analysis (FMEA) which can help classify customers into more accurate segments.

Design/methodology/approach

The present study offers a look at the three most commonly used approaches to assessing customer loyalty:net promoter score, loyalty ladder and loyalty matrix. A survey on the quality of restaurant services compares the results of categorizing customers according to these three most frequently used approaches.

Findings

A new way of categorizing customers through loyalty priority number (LPN) is proposed. LPN was designed as a major segmentation criterion consisting of customer loyalty rate, frequency of purchase of products or services and value of purchases. Using the proposed approach allows to categorize customers into four more comprehensive groups: random, bronze, silver and gold – according to their loyalty and value to the organization.

Practical implications

Survey will bring a more accurate way of categorizing customers even in those sectors where transaction data are not available. More accurate customer categorization will enable organizations to use targeting tools more effectively and improve product positioning.

Originality/value

The most commonly used categorization approaches such as net promoter score, loyalty ladder or loyalty matrix offer relatively general information about customer groups. The present study combines the benefits of these approaches with the principles of FMEA. The case study not only made it possible to offer a view of the real application of the proposed approach but also made it possible to make a uniform comparison of the accuracy of customer categorization.

Details

International Journal of Quality & Reliability Management, vol. 38 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Content available
Article
Publication date: 27 November 2020

Petar Jackovich, Bruce Cox and Raymond R. Hill

This paper aims to define the class of fragment constructive heuristics used to compute feasible solutions for the traveling salesman problem (TSP) into edge-greedy and…

Abstract

Purpose

This paper aims to define the class of fragment constructive heuristics used to compute feasible solutions for the traveling salesman problem (TSP) into edge-greedy and vertex-greedy subclasses. As these subclasses of heuristics can create subtours, two known methodologies for subtour elimination on symmetric instances are reviewed and are expanded to cover asymmetric problem instances. This paper introduces a third novel subtour elimination methodology, the greedy tracker (GT), and compares it to both known methodologies.

Design/methodology/approach

Computational results for all three subtour elimination methodologies are generated across 17 symmetric instances ranging in size from 29 vertices to 5,934 vertices, as well as 9 asymmetric instances ranging in size from 17 to 443 vertices.

Findings

The results demonstrate the GT is the fastest method for preventing subtours for instances below 400 vertices. Additionally, a distinction between fragment constructive heuristics and the subtour elimination methodology used to ensure the feasibility of resulting solutions enables the introduction of a new vertex-greedy fragment heuristic called ordered greedy.

Originality/value

This research has two main contributions: first, it introduces a novel subtour elimination methodology. Second, the research introduces the concept of ordered lists which remaps the TSP into a new space with promising initial computational results.

Open Access
Article
Publication date: 9 December 2022

Xuwei Pan, Xuemei Zeng and Ling Ding

With the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity…

Abstract

Purpose

With the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity and unreliable quality, which greatly increases the complexity of recommendation. The contradiction between the efficiency and effectiveness of recommendation service in social tagging is increasingly becoming prominent. The purpose of this study is to incorporate topic optimization into collaborative filtering to enhance both the effectiveness and the efficiency of personalized recommendations for social tagging.

Design/methodology/approach

Combining the idea of optimization before service, this paper presents an approach that incorporates topic optimization into collaborative recommendations for social tagging. In the proposed approach, the recommendation process is divided into two phases of offline topic optimization and online recommendation service to achieve high-quality and efficient personalized recommendation services. In the offline phase, the tags' topic model is constructed and then used to optimize the latent preference of users and the latent affiliation of resources on topics.

Findings

Experimental evaluation shows that the proposed approach improves both precision and recall of recommendations, as well as enhances the efficiency of online recommendations compared with the three baseline approaches. The proposed topic optimization–incorporated collaborative recommendation approach can achieve the improvement of both effectiveness and efficiency for the recommendation in social tagging.

Originality/value

With the support of the proposed approach, personalized recommendation in social tagging with high quality and efficiency can be achieved.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

1 – 10 of over 4000