Search results

1 – 10 of over 1000
Article
Publication date: 4 December 2023

Chandan Kumawat, Bhupendra Kumar Sharma, Taseer Muhammad and Liaqat Ali

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past…

Abstract

Purpose

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past couple of decades, the percentage of deaths associated with blood vessel diseases has risen sharply to nearly one third of all fatalities. For vascular disease to be stopped in its tracks, it is essential to understand the vascular geometry and blood flow within the artery. In recent scenarios, because of higher thermal properties and the ability to move across stenosis and tumor cells, nanoparticles are becoming a more common and effective approach in treating cardiovascular diseases and cancer cells.

Design/methodology/approach

The present mathematical study investigates the blood flow behavior in the overlapped stenosed curved artery with cylinder shape catheter. The induced magnetic field and entropy generation for blood flow in the presence of a heat source, magnetic field and nanoparticle (Fe3O4) have been analyzed numerically. Blood is considered in artery as two-phases: core and plasma region. Power-law fluid has been considered for core region fluid, whereas Newtonian fluid is considered in the plasma region. Strongly implicit Stone’s method has been considered to solve the system of nonlinear partial differential equations (PDE’s) with 10–6 tolerance error.

Findings

The influence of various parameters has been discussed graphically. This study concludes that arterial curvature increases the probability of atherosclerosis deposition, while using an external heating source flow temperature and entropy production. In addition, if the thermal treatment procedure is carried out inside a magnetic field, it will aid in controlling blood flow velocity.

Originality/value

The findings of this computational analysis hold great significance for clinical researchers and biologists, as they offer the ability to anticipate the occurrence of endothelial cell injury and plaque accumulation in curved arteries with specific wall shear stress patterns. Consequently, these insights may contribute to the potential alleviation of the severity of these illnesses. Furthermore, the application of nanoparticles and external heat sources in the discipline of blood circulation has potential in the medically healing of illness conditions such as stenosis, cancer cells and muscular discomfort through the usage of beneficial effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 November 2023

Velmurugan Kumaresan, S. Saravanasankar and Gianpaolo Di Bona

Through the use of the Markov Decision Model (MDM) approach, this study uncovers significant variations in the availability of machines in both faulty and ideal situations in…

Abstract

Purpose

Through the use of the Markov Decision Model (MDM) approach, this study uncovers significant variations in the availability of machines in both faulty and ideal situations in small and medium-sized enterprises (SMEs). The first-order differential equations are used to construct the mathematical equations from the transition-state diagrams of the separate subsystems in the critical part manufacturing plant.

Design/methodology/approach

To obtain the lowest investment cost, one of the non-traditional optimization strategies is employed in maintenance operations in SMEs in this research. It will use the particle swarm optimization (PSO) algorithm to optimize machine maintenance parameters and find the best solutions, thereby introducing the best decision-making process for optimal maintenance and service operations.

Findings

The major goal of this study is to identify critical subsystems in manufacturing plants and to use an optimal decision-making process to adopt the best maintenance management system in the industry. The optimal findings of this proposed method demonstrate that in problematic conditions, the availability of SME machines can be enhanced by up to 73.25%, while in an ideal situation, the system's availability can be increased by up to 76.17%.

Originality/value

The proposed new optimal decision-support system for this preventive maintenance management in SMEs is based on these findings, and it aims to achieve maximum productivity with the least amount of expenditure in maintenance and service through an optimal planning and scheduling process.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 9 May 2023

Anurag Mishra, Pankaj Dutta and Naveen Gottipalli

The supply chain (SC) of the fast-moving consumer goods (FMCG) sector in India witnessed a significant change soon after introducing the Goods and Services Tax (GST). With the…

Abstract

Purpose

The supply chain (SC) of the fast-moving consumer goods (FMCG) sector in India witnessed a significant change soon after introducing the Goods and Services Tax (GST). With the initiation of this tax, companies started moving from individual state-wise warehouses to consolidation warehouses model to save costs. This paper proposes a model that frames a mathematical formulation to optimize the distribution network in the downstream SC by considering the complexities of multi-product lines, multi-transport modes and consolidated warehouses.

Design/methodology/approach

The model is designed as mixed-integer linear programming (MILP), and an algorithm is developed that works on the feedback loop mechanism. It optimizes the transportation and warehouses rental costs simultaneously with impact analysis.

Findings

Total cost is primarily influenced by the critical factor transportation price rather than the warehouse rent. The choice of warehouses at prime locations was a trade-off between a lower distribution cost and higher rent tariffs.

Research limitations/implications

The study enables FMCG firms to plan their downstream SC efficiently and to be in line with the recent trend of consolidation of warehouses. The study will help SC managers solve complexities such as multi-product categories, truck selection and consolidation warehouse selection problems and find the optimum value for each.

Originality/value

The issues addressed in the proposed work are transporting products with different sizes and weights, selecting consolidated warehouses, selecting suitable vehicles for transportation and optimizing distance in the distribution network by considering consolidated warehouses.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 3
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 31 July 2023

Dinesh Kumar Kushwaha, Dilbagh Panchal and Anish Sachdeva

To meet energy demand and tackle the challenges posed by global warming, Bagasse-based Cogeneration Power Generation (BCPG) plant in sugar mills have tremendous potential due to…

Abstract

Purpose

To meet energy demand and tackle the challenges posed by global warming, Bagasse-based Cogeneration Power Generation (BCPG) plant in sugar mills have tremendous potential due to large-scale supply of renewable fuel called bagasse. To meet this goal, an integrated framework has been proposed for analyzing performance issues of BCPG.

Design/methodology/approach

Intuitionistic Fuzzy Lambda-Tau (IFLT) approach was implemented to compute various reliability parameters. Intuitionistic Fuzzy Failure Mode and Effect Analysis (IF-FMEA) approach has been implemented for studying risk issues results in decrease in plant's availability. Moreover, IF- Technique for Order Performance by Similarity to Ideal Solution (IF-TOPSIS) is implemented to verify accuracy of IF-FMEA approach.

Findings

For membership and non-membership functions, availability decreases to 0.0006% and 0.0020% respectively for spread ±15% to ±30%, and further decreases to 0.0127% and 0.0221% for spread ±30% to ±45%. Under risk assessment failure causes namely Storage tank (ST3), Valve (VL6), Transfer pump (TF8), Deaerator tank (DT11), High pressure heater and economiser (HP15), Boiler drum and super heater (BS22), Forced draft and Secondary air fan (FS25), Air preheater (AH29) and Furnace (FR31) with Intuitionistic Fuzzy Hybrid Weighted Euclidean Distance (IFHWED) based output scores – 0.8988, 0.9752, 0.9400, 0.8988, 0.9267, 1.1131, 1.0039, 0.8185, 1.0604 were identified as the most critical failure causes.

Research limitations/implications

Reliability and risk analysis results derived from IFLT and IF-FMEA approaches respectively, to address the performance issues of BCPG is based on the quantitative and qualitative data collected from the industrial experts and maintenance log book. Moreover, to take care of hesitation in expert's knowledge, IF theory-based concept is incorporated so as to achieve more accuracy in analysis results. Reliability and risk analysis results together will be helpful in analyzing the performance characteristics and diagnosis of critical failure causes, which will minimize frequent failure in BCPG.

Practical implications

The framework will help plant managers to frame optimal maintenance policy in order to enhance the operational aspects of the considered unit. Moreover, the accurate and early detection of failure causes will also help managers to take prudent decision for smooth operation of plant.

Social implications

The results obtained ensure continuous operation of plant by utilizing the bagasse as fuel in boiler and also mitigate the wastages of fuel. If this bagasse (green fuel) is not properly utilized, there remains a dependency on coal-based power plants to meet the power demand. The results obtained are useful for decreasing dependency on coal, and promoting bagasse as the green, and alternative fuel, the emission by burning of these fuels are not harmful for environment and thereby contribute in preventing the environment from harmful effect of GHGs gases.

Originality/value

IFLT approach has been implemented to develop reliability modeling equations of the BCPG unit, and furthermore to compute various reliability parameters for both membership and non-membership function. The ranking results of IF-FMEA are compared to IF-TOPSIS approach. Sensitivity analysis is done to check stability of proposed framework.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 May 2022

Odey Alshboul, Ali Shehadeh, Omer Tatari, Ghassan Almasabha and Eman Saleh

Efficient management of earthmoving equipment is critical for decision-makers in construction engineering management. Thus, the purpose of this paper is to prudently identify…

Abstract

Purpose

Efficient management of earthmoving equipment is critical for decision-makers in construction engineering management. Thus, the purpose of this paper is to prudently identify, select, manage and optimize the associated decision variables (e.g. capacity, number and speed) for trucks and loaders equipment to minimize cost and time objectives.

Design/methodology/approach

This paper addresses an innovative multiobjective and multivariable mathematical optimization model to generate a Pareto-optimality set of solutions that offers insights of optimal tradeoffs between minimizing earthmoving activity’s cost and time. The proposed model has three major stages: first, define all related decision variables for trucks and loaders and detect all related constraints that affect the optimization model; second, derive the mathematical optimization model and apply the multiobjective genetic algorithms and classify all inputs and outputs related to the mathematical model; and third, model validation.

Findings

The efficiency of the proposed optimization model has been validated using a case study of earthmoving activities based on data collected from the real-world construction site. The outputs of the conducted optimization process promise the model’s originality and efficiency in generating optimal solutions for optimal time and cost objectives.

Originality/value

This model provides the decision-maker with an efficient tool to select the optimal design variables to minimize the activity's time and cost.

Details

Journal of Facilities Management , vol. 22 no. 1
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 2 January 2024

Haisang Liu, Gaoming Jiang and Zhijia Dong

The warp-knitted fully-formed shorts are one kind of fully-formed garments knitted by a double-needle bar machine, which is widely used in the medical field. Because of its…

Abstract

Purpose

The warp-knitted fully-formed shorts are one kind of fully-formed garments knitted by a double-needle bar machine, which is widely used in the medical field. Because of its distinctive forming method, designers are unable to grasp the final effect of the product accurately during the design process. The purpose of this paper is to clarify a visible 3D simulation method in the design process along with the knitting method and structure characteristics, which is reflected in the final product effect.

Design/methodology/approach

This study introduces a simulation process for warp-knitted fully-formed fabric from an input 3D surface model group. Stitch mesh models are established according to the garment structure and the triangle index of the garment model that swchape-controlling points belong to is calculated. The garment model group includes a 2D plate and a 3D model, between which there is a space coordinate transformation relationship. The study makes use of the 3D tubes to connect the coordinate points in order and render the tubes in real yarn colors. The effects of two parameters, radial segment and tubular segment, are analyzed and decided to obtain a fine surface within a reasonable rendering time.

Findings

A stereoscopic simulation process from flat fabric to 3D product is realized using computer graphics technology. The warp-knitted fully-formed short is shown during the design process within a short time by setting the rendering parameters of tubular segments (ts = 125) and radial segments (rs = 6).

Originality/value

Visual simulation for the shorts provides a time-saving and resource-saving method for structure design and parameter modification before knitting. There is no need to knit samples repeatedly to satisfy demand, which indicates that it is a saver of time and resources.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 January 2024

Mohsen Rajabzadeh, Seyed Meysam Mousavi and Farzad Azimi

This paper investigates a problem in a reverse logistics (RLs) network to decide whether to dispose of unsold goods in primary stores or re-commercialize them in outlet centers…

Abstract

Purpose

This paper investigates a problem in a reverse logistics (RLs) network to decide whether to dispose of unsold goods in primary stores or re-commercialize them in outlet centers. By deducting the costs associated with each policy from its revenue, this study aims to maximize the profit from managing unsold goods.

Design/methodology/approach

A new mixed-integer linear programming model has been developed to address the problem, which considers the selling prices of products in primary and secondary stores and the costs of transportation, cross-docking and returning unwanted items. As a result of uncertain nature of the cost and time parameters, gray numbers are used to deal with it. In addition, an innovative uncertain solution approach for gray programming problems is presented that considers objective function satisfaction level as an indicator of optimism.

Findings

According to the results, higher costs, including transportation, cross-docking and return costs, make sending goods to outlet centers unprofitable and more goods are disposed of in primary stores. Prices in primary and secondary stores heavily influence the number of discarded goods. Higher prices in primary stores result in more disposed of goods, while higher prices in secondary stores result in fewer. As a result of the proposed method, the objective function satisfaction level can be viewed as a measure of optimism.

Originality/value

An integral contribution of this study is developing a new mixed-integer linear programming model for selecting the appropriate goods for re-commercialization and choosing the best outlet center based on the products' price and total profit. Another novelty of the proposed model is considering the matching percentage of boxes with secondary stores’ desired product lists and the probability of returning goods due to non-compliance with delivery dates. Moreover, a new uncertain solution approach is developed to solve mathematical programming problems with gray parameters.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 30 June 2023

Catarina Lucas and Joana Paulo

The purpose of this study is to present a general review that provides an overview of the concept of sustainability and the effectiveness of mathematics curricula in courses where…

Abstract

Purpose

The purpose of this study is to present a general review that provides an overview of the concept of sustainability and the effectiveness of mathematics curricula in courses where deeper work on economic and environmental sustainability has become central.

Design/methodology/approach

A qualitative methodology consisting of a review based on a pre-defined systematic method was used to exhaustively search and identify the most relevant answers to the research question: What is the role of mathematics to sustainability? To facilitate answering such a broad question, several concrete questions were formulated. Answers from published and unpublished documents were analysed. The quality of the extracted data was assessed, and the results were synthesized.

Findings

It was concluded that, on the one hand, the discipline of mathematics has much to contribute to solving the problems of sustainability; on the other hand, new mathematics is appearing stimulated by new challenges.

Social implications

This work presents social implications in an innovative way. It allows for an increase in educational sustainability by bringing the academic community closer to the business world and the challenges of society and, furthermore, by having a major impact on the motivation of teachers and students to develop cooperative work within university institutions.

Originality/value

The originality is based on an a priori analysis for the construction and implementation of didactic tools for university teacher training in the area of mathematics within the framework of sustainable development, both economically and environmentally.

Details

International Journal of Innovation Science, vol. 16 no. 2
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 26 September 2023

Thameem Hayath Basha, Sivaraj Ramachandran and Bongsoo Jang

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes…

Abstract

Purpose

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes requires a deep understanding of thermophysical behavior, rheology and complex chemical reactions. The manufacturing flow processes for these coatings are intricate and involve heat and mass transfer phenomena. Magnetic nanoparticles are being used to create intelligent coatings that can be externally manipulated, making them highly desirable. In this study, a Keller box calculation is used to investigate the flow of a coating nanofluid containing a viscoelastic polymer over a circular cylinder.

Design/methodology/approach

The rheology of the coating polymer nanofluid is described using the viscoelastic model, while the effects of nanoscale are accounted for by using Buongiorno’s two-component model. The nonlinear PDEs are transformed into dimensionless PDEs via a nonsimilar transformation. The dimensionless PDEs are then solved using the Keller box method.

Findings

The transport phenomena are analyzed through a comprehensive parametric study that investigates the effects of various emerging parameters, including thermal radiation, Biot number, Eckert number, Brownian motion, magnetic field and thermophoresis. The results of the numerical analysis, such as the physical variables and flow field, are presented graphically. The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as fluid parameter increases. An increase in mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid.

Practical implications

Intelligent materials rely heavily on the critical characteristic of viscoelasticity, which displays both viscous and elastic effects. Viscoelastic models provide a comprehensive framework for capturing a range of polymeric characteristics, such as stress relaxation, retardation, stretching and molecular reorientation. Consequently, they are a valuable tool in smart coating technologies, as well as in various applications like supercapacitor electrodes, solar collector receivers and power generation. This study has practical applications in the field of coating engineering components that use smart magnetic nanofluids. The results of this research can be used to analyze the dimensions of velocity profiles, heat and mass transfer, which are important factors in coating engineering. The study is a valuable contribution to the literature because it takes into account Joule heating, nonlinear convection and viscous dissipation effects, which have a significant impact on the thermofluid transport characteristics of the coating.

Originality/value

The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as the fluid parameter increases. An increase in the mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid. Increasing the strength of the magnetic field promotes an increase in the density of the streamlines. An increase in the mixed convection parameter results in a decrease in the isotherms and isoconcentration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 February 2024

Muhammad Faisal, F. Mabood, I.A. Badruddin, Muhammad Aiyaz and Faisal Mehmood Butt

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering…

15

Abstract

Purpose

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.

Design/methodology/approach

Suitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.

Findings

It is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.

Originality/value

To the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 1000