Search results

11 – 20 of over 213000
Article
Publication date: 2 April 2024

Jhumana Akter, Mobasshira Islam and Shuvo Dip Datta

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This…

Abstract

Purpose

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This study aims to determine suitable material and optimum thickness for the insulation layer considering both operational and embodied factors by a comprehensive assessment of the energy, economic and environmental (3E) parameters.

Design/methodology/approach

First, the energy model of an existing building was created by using Autodesk Revit software according to the as-built floor layout to evaluate the impact of five alternative insulating materials in varying thickness values. Second, using the results derived from the model, a thorough evaluation was conducted to ascertain the optimal insulation material and thickness through individual analysis of 3E factors, followed by a comprehensive analysis considering the three aforementioned factors simultaneously.

Findings

The findings indicated that polyurethane with 13 cm thickness, rockwool with 10 cm thickness and EPS with 20 cm thickness were the best states based on energy consumption, cost and environmental footprint, respectively. After completing the 3E investigation, the 15-cm-thick mineral wool insulation was presented as the ideal state.

Practical implications

This study explores how suitable material and thickness of insulating material can be determined in advance during the design phase of a building, which is a lot more accurate and cost-effective than applying insulating materials by assumed thickness in the construction phase.

Originality/value

To the best of the authors’ knowledge, this paper is unique in investigating the advantages of using thermally insulating materials in the context of a mosque structure, taking into account its distinctive attributes that deviate from those of typical buildings. Furthermore, there has been no prior analysis of the cost and sustainability implications of these materials concerning the characteristics of subtropical monsoon climate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 August 2022

Yan Zhang, Xianghu Ge, Xin Zhao, Xiaorui Yang, Shanghe Liu and Jingjing Xuan

The purpose of this paper is to research the induced flashover laws of different insulation materials under electrostatic electromagnetic pulse, and the induced flashover…

Abstract

Purpose

The purpose of this paper is to research the induced flashover laws of different insulation materials under electrostatic electromagnetic pulse, and the induced flashover characteristics of different electrode structures are further explored.

Design/methodology/approach

According to standard IEC 61000–4-2, an experimental system of electrostatic electromagnetic pulse flashover for insulation materials is established. The induction flashover laws of polytetrafluoroethylene, epoxy resin and polymethyl methacrylate surface-mounted finger electrodes under the different intensity of electrostatic electromagnetic pulse are researched. The influence of the finger electrode, needle–needle electrode and needle–plate electrode on insulation flashover was compared. Secondary electron emission avalanche (SEEA) and field superposition theory are used to analyze the experimental results of electrostatic electromagnetic pulse induced flashover.

Findings

The larger the dielectric strength of insulation materials, the more difficult flashover occurs on the surface. The field superposition enhances collision ionization between electrons and gas molecules, which leads to the insulation materials surface induced flashover easily by electrostatic electromagnetic pulse. The sharper the electrode shapes on the insulation materials surface, the stronger the electric field intensity at the cathode triple junction, more initial electrons are excited to form the discharge channel, which easily leads to flashover on the surface of the insulating material.

Originality/value

The proposed field superposition combined with the SEEA method provides a new study perspective and enables a more rational, comprehensive analysis of electrostatic electromagnetic pulse induced flashover of insulation materials. The work of this paper can provide a reference for the safety protection of spacecraft in orbit under a strong electromagnetic field environment, increase the service life of spacecraft and improve the reliability of spacecraft’s safe operation in orbit. It provides a basis for the selection of insulation materials for equipment under the different intensities of the external electromagnetic environment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 6 March 2024

Chuloh Jung, Muhammad Azzam Ismail, Mohammad Arar and Nahla AlQassimi

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor…

Abstract

Purpose

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor air pollutants over time for each product employed in controlling pollution sources and removing it, which included eco-friendly substances and adsorbents. The study will provide more precise and dependable data on the effectiveness of these control methods, ultimately supporting the creation of more efficient and sustainable approaches for managing indoor air pollution in buildings.

Design/methodology/approach

The research investigates the impact of eco-friendly materials and adsorbents on improving indoor air quality (IAQ) in Dubai's tall apartment buildings. Field experiments were conducted in six units of The Gate Tower, comparing the IAQ of three units built with “excellent” grade eco-friendly materials with three built with “good” grade materials. Another experiment evaluated two adsorbent products (H and Z) in the Majestic Tower over six months. Results indicate that “excellent” grade materials significantly reduced toluene emissions. Adsorbent product Z showed promising results in pollutant reduction, but there is concern about the long-term behavior of adsorbed chemicals. The study emphasizes further research on household pollutant management.

Findings

The research studied the effects of eco-friendly materials and adsorbents on indoor air quality in Dubai's new apartments. It found that apartments using “excellent” eco-friendly materials had significantly better air quality, particularly reduced toluene concentrations, compared to those using “good” materials. However, high formaldehyde (HCHO) emissions were observed from wood products. While certain construction materials led to increased ethylbenzene and xylene levels, adsorbent product Z showed promise in reducing pollutants. Yet, there is a potential concern about the long-term rerelease of these trapped chemicals. The study emphasizes the need for ongoing research in indoor pollutant management.

Research limitations/implications

The research, while extensive, faced limitations in assessing the long-term behavior of adsorbed chemicals, particularly the potential for rereleasing trapped pollutants over time. Despite the study spanning a considerable period, indoor air pollutant concentrations in target households did not stabilize, making it challenging to determine definitive improvement effects and reduction rates among products. Comparisons were primarily relative between target units, and the rapid rise in pollutants during furniture introduction warrants further examination. Consequently, while the research provides essential insights, it underscores the need for more prolonged and comprehensive evaluations to fully understand the materials' and adsorbents' impacts on indoor air quality.

Practical implications

The research underscores the importance of choosing eco-friendly materials in new apartment constructions for better IAQ. Specifically, using “excellent” graded materials can significantly reduce harmful pollutants like toluene. However, the study also highlights that certain construction activities, such as introducing furniture, can rapidly elevate pollutant levels. Moreover, while adsorbents like product Z showed promise in reducing pollutants, there is potential for adsorbed chemicals to be rereleased over time. For practical implementation, prioritizing higher-grade eco-friendly materials and further investigation into furniture emissions and long-term behavior of adsorbents can lead to healthier indoor environments in newly built apartments.

Originality/value

The research offers a unique empirical assessment of eco-friendly materials' impact on indoor air quality within Dubai's rapidly constructed apartment buildings. Through field experiments, it directly compares different material grades, providing concrete data on pollutant levels in newly built environments. Additionally, it explores the efficacy of specific adsorbents, which is of high value to the construction and public health sectors. The findings shed light on how construction choices can influence indoor air pollution, offering valuable insights to builders, policymakers and residents aiming to promote public health and safety in urban living spaces.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 5 March 2024

Saloni Purandare and Chunhui Xiang

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE…

Abstract

Purpose

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE. Over time the gloves have reduced the intensity of hand injuries, yet further improvement in terms of material selection and glove design is required to strike the balance between protection and comfort. Focusing on the material aspect, the purpose of this study is to present literature analysis on material selection and testing for firefighter gloves.

Design/methodology/approach

The study conducted a literature analysis on material selection and characterization of firefighter PPE. The review summarizes and evaluates past work addressing the characterization of firefighter gloves in accordance with NFPA 1971 requirements and points out found research gaps to aid with foundation of future research.

Findings

The study summarizes several research works to inform readers about the material selection and characterization of firefighter gloves. Based on the analyzed literature, the study resulted in material specification sheets for firefighter gloves. The developed material specification sheets provide information in terms of crucial material properties to be incorporated for accurate functioning of firefighter gloves, testing methods to validate those material properties and materials from analyzed literature exhibiting desired properties.

Originality/value

With large research addressing firefighter PPE, only limited studies focus specifically on gloves. Thus, this study provides a literature analysis covering material selection and testing for gloves. A consolidated firefighter gloves material specification document, which does not appear to be available in the literature, will provide a foundation for the development and characterization of firefighter gloves to better serve the functions along with ensuring user comfort.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 February 2024

Neelam Setia, Subhash Abhayawansa, Mahesh Joshi and Nandana Wasantha Pathiranage

Integrated reporting enhances the meaningfulness of non-financial information, but whether this enhancement is progressive or regressive from a sustainability perspective is…

Abstract

Purpose

Integrated reporting enhances the meaningfulness of non-financial information, but whether this enhancement is progressive or regressive from a sustainability perspective is unknown. This study aims to examine the influence of the Integrated Reporting (<IR>) Framework on the disclosure of financial- and impact-material sustainability-related information in integrated reports.

Design/methodology/approach

Using a disclosure index constructed from the Global Reporting Initiative’s G4 Guidelines and UN Sustainable Development Goals, the authors content analysed integrated reports of 40 companies from the International Integrated Reporting Council’s Pilot Programme Business Network published between 2015 and 2017. The content analysis distinguished between financial- and impact-material sustainability-related information.

Findings

The extent of sustainability-related disclosures in integrated reports remained more or less constant over the study period. Impact-material disclosures were more prominent than financial material ones. Impact-material disclosures mainly related to environmental aspects, while labour practices-related disclosures were predominantly financially material. The balance between financially- and impact-material sustainability-related disclosures varied based on factors such as industry environmental sensitivity and country-specific characteristics, such as the country’s legal system and development status.

Research limitations/implications

The paper presents a unique disclosure index to distinguish between financially- and impact-material sustainability-related disclosures. Researchers can use this disclosure index to critically examine the nature of sustainability-related disclosure in corporate reports.

Practical implications

This study offers an in-depth understanding of the influence of non-financial reporting frameworks, such as the <IR> Framework that uses a financial materiality perspective, on sustainability reporting. The findings reveal that the practical implementation of the <IR> Framework resulted in sustainability reporting outcomes that deviated from theoretical expectations. Exploring the materiality concept that underscores sustainability-related disclosures by companies using the <IR> Framework is useful for predicting the effects of adopting the Sustainability Disclosure Standards issued by the International Sustainability Standards Board, which also emphasises financial materiality.

Social implications

Despite an emphasis on financial materiality in the <IR> Framework, companies continue to offer substantial impact-material information, implying the potential for companies to balance both financial and broader societal concerns in their reporting.

Originality/value

While prior research has delved into the practices of regulated integrated reporting, especially in the unique context of South Africa, this study focuses on voluntary adoption, attributing observed practices to intrinsic company motivations. To the best of the authors’ knowledge, it is the first study to explicitly explore the nature of materiality in sustainability-related disclosure. The research also introduces a nuanced understanding of contextual factors influencing sustainability reporting.

Details

Meditari Accountancy Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-372X

Keywords

Article
Publication date: 21 February 2024

Xin Feng, Lei Yu, Weilong Tu and Guoqiang Chen

With the development of science and technology, more creators are trying to use new crafts to represent the cultural trends of the social media era, which makes cultural heritage…

Abstract

Purpose

With the development of science and technology, more creators are trying to use new crafts to represent the cultural trends of the social media era, which makes cultural heritage innovative and new genres emerge. This compels the academic community to examine craft from a new perspective. It is very helpful to understand the hidden representational structure of craft more deeply and improve the craft innovation system of cultural and creative products that we deconstruct the craft based on Complex Network and discover its intrinsic connections.

Design/methodology/approach

The research crawled and cleaned the craft information of the top 20% products on the Forbidden City’s cultural and creative products online and then performed Complex Network modeling, constructed three craft representation networks among function, material and technique, quantified and analyzed the inner connections and network structure of the craft elements, and then analyzed the cultural inheritance and innovation embedded in the craft representation networks.

Findings

The three dichotomous craft representation networks constructed by combining function, material and technique: (1) the network density is low and none of them has small-world characteristics, indicating that the innovative heritage of the craft elements in the Forbidden City’s cultural and creative products is at the stage of continuous exploration and development, and multiple coupling innovation is still insufficient; (2) all have scale-free characteristics and there is still a certain degree of community structure within each network, indicating that the coupling innovation of craft elements of the Forbidden City’s cultural and creative products is seriously uneven, with some specific “grammatical combinations” and an Island Effect in the network structure; (3) the craft elements with high network centrality emphasize the characteristics of decorative culture and design for the masses, as well as the pursuit of production efficiency and economic benefits, which represent the aesthetic purport of contemporary Chinese society and the ideological trend of production and life.

Originality/value

The Forbidden City’s cultural and creative products should continue to develop and enrich the multi-coupling innovation of craft elements, clarify and continue their own brand unique craft genes, and make full use of the network important nodes role.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 6 November 2009

Olivia Guerra Santin

The purpose of this paper is to determine the environmental performance of construction trends in houses in central Mexico by assessing the type and quantity of material used in…

1219

Abstract

Purpose

The purpose of this paper is to determine the environmental performance of construction trends in houses in central Mexico by assessing the type and quantity of material used in construction elements.

Design/methodology/approach

Three reference Mexican houses are used for the analysis: a traditional house, a house with mostly masonry elements, and a house with mostly concrete elements. The reference houses indicate the construction trend followed in central Mexico. Quantitative analysis of the types and weights of various materials used to construct the houses is undertaken. The environmental performance is measured according to their sustainability potential. The indicators used are based on the Three Step Strategy, which sets the steps needed to achieve sustainable construction: use fewer materials, use renewable materials and be efficient with the remaining need.

Findings

The analysis shows that there is a trend to use faster and cheaper construction processes, which are often concrete and prefabricated elements, especially for dwellings built in series. Although this has the positive impact of decreasing the stress on housing demand, it might have negative impacts on the environment because more energy‐intensive and artificial materials are used. In addition, the low homogeneity of these materials decreases the potential of construction elements to be reused or recycled.

Research limitations/implications

The findings of this study aim at providing more information to practitioners on the sustainability of material choices during the design process. Thus practitioners will be better informed to design more environmentally sustainable buildings. The results are based on analysis of data from Central Mexico but may have relevance to other parts of the world.

Originality/value

The study provides quantitatively derived evidence to support sustainable design decisions.

Details

Structural Survey, vol. 27 no. 5
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 February 1980

Catherine F. Pinion

A survey was carried out in 1979 into the loan availability and provision of audiovisual materials in the United Kingdom, whether through the Regional Library Bureaux or through…

Abstract

A survey was carried out in 1979 into the loan availability and provision of audiovisual materials in the United Kingdom, whether through the Regional Library Bureaux or through separate co‐operative arrangements such as the Greater London Audio Specialization Scheme. Interlending practices are seen in relation to basic audiovisual provision and demand in public and educational libraries. The effects of inadequate bibliographical control, copyright problems and the practical aspects of the inter/ending of audiovisual materials are discussed. The results of the enquiry indicate limited provision, small demand and a widespread lack of knowledge concerning the existence of audiovisual materials and their availability.

Details

Interlending Review, vol. 8 no. 2
Type: Research Article
ISSN: 0140-2773

Article
Publication date: 2 January 2018

Nils Grimmelsmann, Mirja Kreuziger, Michael Korger, Hubert Meissner and Andrea Ehrmann

Composites combining two or more different materials with different physical and chemical properties allow for tailoring mechanical and other characteristics of the resulting…

1870

Abstract

Purpose

Composites combining two or more different materials with different physical and chemical properties allow for tailoring mechanical and other characteristics of the resulting multi-material system. In relation to fiber-reinforced plastic composites, combinations of textile materials with 3D printed polymers result in different mechanical properties. While the tensile strength of the multi-material system is increased compared to the pure 3D printed material, the elasticity of the polymer layer can be retained to a certain degree, as the textile material is not completely immersed in the polymer. Instead, an interface layer is built in which both materials interpenetrate to a certain degree. The purpose of this study is to investigate the adhesion between both materials at this interface.

Design/methodology/approach

This paper gives an overview of the parameters affecting the interface layer. It shows that both the printing material and the textile substrate influence the adhesion between both materials due to viscosity during printing, thickness and pore sizes, respectively. While some material combinations build strong form-locking connections, others can easily be delaminated.

Findings

Depending on both materials, significantly different adhesion values can be found in such 3D printed composites.

Practical implications

This makes some combinations very well suitable for building composites with novel mechanical properties, while other suffer of insufficient connections.

Originality/value

For the first time, the dependence of the polymer-textile adhesion force was evaluated according to the distance between both compound partners. It was shown that this value is of crucial interest and must thus be taken into account when producing printed polymer-textile composites.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

11 – 20 of over 213000