Search results

1 – 10 of 360
Article
Publication date: 26 July 2023

Kashif Noor, Mubashir Ali Siddiqui and Amir Iqbal Syed

This study was conducted to analyze the effects of machining parameters on the specific energy consumption in the computerized numerical control lathe turning operation of a…

Abstract

Purpose

This study was conducted to analyze the effects of machining parameters on the specific energy consumption in the computerized numerical control lathe turning operation of a hardened alloy steel roll at low cutting speeds. The aim was to minimize its consumption.

Design/methodology/approach

The design matrix was based on three variable factors at three levels. Response surface methodology was used for the analysis of experimental results. Optimization was carried out by using the desirability function and genetic algorithm. A multiple regression model was used for relationship build-up.

Findings

According to desirability function, genetic algorithm and multiple regression analysis, optimal machining parameters were cutting speed 40 m/min, feed 0.2 mm/rev and depth of cut 0.50 mm, which resulted in minimal specific energy consumption of 0.78, 0.772 and 0.78 kJ/mm3, respectively. Correlation analysis and multiple regression model found a quadratic relationship between specific energy consumption with power consumption and material removal rate.

Originality/value

In the past, many researchers have developed mathematical models for specific energy consumption, but these models were developed at high cutting speed, and a majority of the models were based on the material removal rate as the independent variable. This research work developed a mathematical model based on the machining parameters as an independent variable at low cutting speeds, for a new type of large-sized hardened alloy steel roll. A multiple regression model was developed to build a quadratic relationship of specific energy consumption with power consumption and material removal rate. This work has a practical application in hot rolling industry.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 13 September 2023

Abhinav Shard, Mohinder Pal Garg and Vishal Gupta

The purpose of this study is to explore the machining characteristics of electrical discharge machining (EDM) when a tool is fabricated using powder metallurgy. Because pure Cu…

Abstract

Purpose

The purpose of this study is to explore the machining characteristics of electrical discharge machining (EDM) when a tool is fabricated using powder metallurgy. Because pure Cu tools obtained using conventional machining pose problems of high tool wear rate, tool oxidation causes loss of characteristics in tool shape.

Design/methodology/approach

The research investigation carried out experiments planned through Taguchi’s robust design of experiments and used analysis of variance (ANOVA) to carry out statistical analysis.

Findings

It has been found that copper and chromium electrodes give less metal removal rate as compared to the pure Cu tool. Analytical outcomes of ANOVA demonstrated that MRR is notably affected by the variable’s polarity, peak current, pulse on time and electrode type in the machining of EN9 steel with EDM, whereas the variables pulse on time, gap voltage and electrode type have a significant influence on EWR. Furthermore, the process also showed that the use of powder metallurgy tool effectively reduces the value of SR of the machined surface as well as the tool wear rate. The investigation exhibited the possibility of the use of powder metallurgy electrodes to upgrade the machining efficiency of EDM process.

Research limitations/implications

There is no major limitation or implication of this study. However, the composition of the powders used in powder metallurgy for the fabrication of tools needs to be precisely controlled with careful control of process variables during subsequent fabrication of electrodes.

Originality/value

To the best of the authors’ knowledge, this is the first study that investigates the effectiveness of copper and chromium electrodes/tools fabricated by means of powder metallurgy in EDM of EN9 steel. The effectiveness of the tool is assessed in terms of productivity, as well as accuracy measures of MRR and surface roughness of the components in EDM machining.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 March 2024

Prosun Mandal, Srinjoy Chatterjee and Shankar Chakraborty

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an…

Abstract

Purpose

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an effective material removal process. In this process, a series of discontinuous electric discharges is used for removing material from the workpiece in the form of craters generating a replica of the tool into the workpiece in a dielectric environment. Appropriate selection of the tool electrode material and combination of input parameters is an important requirement for performance enhancement of an EDM process. This paper aims to optimize an EDM process using single-valued neutrosophic grey relational analysis using Cu-multi-walled carbon nanotube (Cu-MWCNT) composite tool electrode.

Design/methodology/approach

This paper proposes the application of grey relational analysis (GRA) in a single-valued neutrosophic fuzzy environment to identify the optimal parametric intermix of an EDM process while considering Cu-MWCNT composite as the tool electrode material. Based on Taguchi’s L9 orthogonal array, nine experiments are conducted at varying combinations of four EDM parameters, i.e. pulse-on time, duty factor, discharge current and gap voltage, with subsequent measurement of two responses, i.e. material removal rate (MRR) and tool wear rate (TWR). The electrodeposition process is used to fabricate the Cu-MWCNT composite tool.

Findings

It is noticed that both the responses would be simultaneously optimized at higher levels of pulse-on time (38 µs) and duty factor (8), moderate level of discharge current (5 A) and lower level of gap voltage (30 V). During bi-objective optimization (maximization of MRR and minimization of TWR) of the said EDM process, the achieved values of MRR and TWR are 243.74 mm3/min and 0.001034 g/min, respectively.

Originality/value

Keeping in mind the type of response under consideration, their measured values for each of the EDM experiments are expressed in terms of linguistic variables which are subsequently converted into single-valued neutrosophic numbers. Integration of GRA with single-valued neutrosophic sets would help in optimizing the said EDM process with the Cu-MWCNT composite tool while simultaneously considering truth-membership, indeterminacy membership and falsity-membership degrees in a human-centric uncertain decision-making environment.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 February 2024

Madhavarao Singuru, Kesava Rao V.V.S. and Rama Bhadri Raju Chekuri

This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix…

Abstract

Purpose

This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix composite (HMMC). HMMCs are prepared with 2 Wt.% graphite and 4 Wt.% zirconium dioxide reinforced with aluminium alloy 7475 (GZR-AA7475) composite by using the stir casting method. The objective is to enhance the mechanical properties of the material while preserving its unique features. WCEDM with a 0.18 mm molybdenum wire electrode is used for machining the composite.

Design/methodology/approach

To conduct experimental studies, a Taguchi L27 orthogonal array was adopted. Input variables such as peak current (Ip), pulse-on-time (TON) and flushing pressure (PF) were used. The effect of process parameters on the output responses, such as material removal rate (MRR), surface roughness rate (SRR) and wire wear ratio (WWR), were investigated. The grey relational analysis (GRA) is used to obtain the optimal combination of the process parameters. Analysis of variance (ANOVA) was also used to identify the significant process parameters affecting the output responses.

Findings

Results from the current study concluded that the optimal condition for grey relational grade is obtained at TON = 105 µs, Ip = 100 A and PF = 90 kg/cm2. Peak current is the most prominent parameter influencing the MRR, whereas SRR and WRR are highly influenced by flushing pressure.

Originality/value

Identifying the optimal process parameters in WCEDM for machining of GZR-AA7475 HMMC. ANOVA and GRA are used to obtain the optimal combination of the process parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 2023

Satish Kumar, Arun Gupta, Anish Kumar, Pankaj Chandna and Gian Bhushan

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially…

Abstract

Purpose

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially affects the accuracy. The workpiece temperature (WT), as well as the responses like material removal rate (MRR) and surface roughness (SR) for input parameters like cutting speed (CS), feed rate (F), depth-of-cut (DOC), step over (SO) and tool diameter (TD), becomes critical for sustaining the accuracy of the thin walls.

Design/methodology/approach

Response surface methodology was used to make 46 tests. To convert the multi-character problem into a single-character problem, the weightage was assessed using the entropy approach and the grey relational coefficient (GRC) was determined. To investigate the connection among input parameters and single-objective (GRC), a fuzzy mathematical modelling technique was used. The optimal performance of process parameters was estimated by grey relational entropy grade (GREG)-fuzzy and genetic algorithm (GA) optimization.

Findings

SR was found to be a significant process parameter, with CS, feed and DOC, respectively. Similarly, F, DOC and TD were found to be significant process parameters with MRR, respectively, and F, DOC, SO and TD were found to be significant process parameters with WT, respectively. GREG-fuzzy-GA found more suitable for minimizing the WT with the constraint s of SR and MRR and provide maximum desirability of 0.665. The projected and experimental values have a good agreement, with a standard error of 5.85%, and so the responses predicted by the suggested method are better optimized.

Originality/value

The GREG-fuzzy-GA is a new hybrid technique for analysing Inconel625 behaviour during machining in a 2.5D milling process.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 June 2023

Anshuman Kumar, Chandramani Upadhyay, Ram Subbiah and Dusanapudi Siva Nagaraju

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and…

Abstract

Purpose

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and medical applications. The machining parameters are selected as Spark-off Time (SToff), Spark-on Time (STon), Wire-speed (Sw), Wire-Tension (WT) and Servo-Voltage (Sv) to explore the machining outcomes. The response characteristics are measured in terms of material removal rate (MRR), average kerf width (KW) and average-surface roughness (SA).

Design/methodology/approach

Taguchi’s approach is used to design the experiment. The “AC Progress V2 high precision CNC-WEDM” is used to conduct the experiments with ϕ 0.25 mm diameter wire electrode. The machining performance characteristics are examined using main effect plots and analysis of variance. The grey-relation analysis and fuzzy interference system techniques have been developed to combine (called grey-fuzzy reasoning grade) the experimental response while Rao-Algorithm is used to calculate the optimal performance.

Findings

The hybrid optimization result is obtained as SToff = 50µs, STon = 105µs, Sw = 7 m/min, WT = 12N and Sv=20V. Additionally, the result is compared with the firefly algorithm and improved gray-wolf optimizer to check the efficacy of the intended approach. The confirmatory test has been further conducted to verify optimization results and recorded 8.14% overall machinability enhancement. Moreover, the scanning electron microscopy analysis further demonstrated effectiveness in the WEDMed surface with a maximum 4.32 µm recast layer.

Originality/value

The adopted methodology helped to attain the highest machinability level. To the best of the authors’ knowledge, this work is the first investigation within the considered parametric range and adopted optimization technique for Ti-3Al-2.5V using the wire-electro discharge machining.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 March 2024

Muhammed Turan Aslan, Bahattin Kanber, Hasan Demirtas and Bilal Sungur

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Abstract

Purpose

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Design/methodology/approach

An experimental setup was designed, experiments were conducted and the obtained results were compared with the finite element results. The deformations were measured according to various flow rates of electrolyte. In finite element calculations, the pressure distribution created by the electrolyte on the blade surface was obtained in the ANSYS® (A finite element analysis software) Fluent software and transferred to the static structural where the deformation analysis was carried out. Three different parameters were examined, namely blade thickness, blade material and electrolyte pressure on blade disk caused by mass flow rate. The deformation results were compared with the gap distances between cathode and anode.

Findings

Large deformations were obtained at the free end of the blade and the most curved part of it. The appropriate pressure values for the electrolyte to be used in the production of blisk blades were proposed numerically. It has been determined that high pressure applications are not suitable for gap distance lower than 0.5 mm.

Originality/value

When the literature is examined, it is required that the high speed flow of the electrolyte is desired in order to remove the parts that are separated from the anode from the machining area during electrochemical machining. However, the electrolyte flowing at high speeds causes high pressure in the blisk blades, excessive deformation and vibration of the machined part, and as a result, contact of the anode with the cathode. This study provides important findings for smooth electro chemical machining at high electrolyte flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 November 2023

Dong Chen, Rui Zhang and JiaCheng Jiang

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of…

Abstract

Purpose

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of BiOBr/PVDF composite membranes made by adding different precursor ratios during the casting process.

Design/methodology/approach

In this paper, sodium bromide and Bi(NO3)3 were used as precursors for the preparation of BiOBr photocatalysts, and PVDF membranes were modified by using the phase conversion method in conjunction with the in situ deposition method to produce BiOBr/PVDF hydrophilic composite membranes with both membrane separation and photocatalytic capabilities.

Findings

The characterization results confirmed that the composites were successfully and homogeneously co-mingled in the PVDF membranes. The related performance of the composite membrane was tested, and it was found that the composite membrane with the optimal precursor incorporation ratio had good photocatalytic efficiency and antipollution ability; the removal efficiencies of methyl orange, rhodamine B and methylene blue were 80.43%, 85.02% and 86.94%, respectively, in 2.5 h. The photocatalytic efficiency of composite membranes with different precursor ratios increased and then decreased with the increase of the precursor addition ratio.

Originality/value

The composite membrane is prepared by phase conversion method with in situ deposition method, and the BiOBr material has unique advantages for the degradation of organic dyes. The comprehensive experimental data can be known that the composite membrane prepared in this paper has high degradation efficiency and good durability for organic dyes.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 360