Search results

1 – 10 of over 86000
Article
Publication date: 5 August 2021

Erina Baynojir Joyee, Jida Huang, Ketki Mahadeo Lichade and Yayue Pan

The purpose of this study is to develop a novel approach to designing locally programmed multi-material distribution in a three-dimensional (3D) model, with the goal of producing…

Abstract

Purpose

The purpose of this study is to develop a novel approach to designing locally programmed multi-material distribution in a three-dimensional (3D) model, with the goal of producing a biomimetic robot that could mimic the locomotion of living organisms.

Design/methodology/approach

A voxelized representation is used to design the multi-material digital model and the material distribution in the model is optimized with the aims of mimicking the deflection dynamics of a real-life biological structure (i.e. inchworms) during its locomotion and achieving smooth deflection between adjacent regions. The design is validated post-fabrication by comparing the bending profiles of the printed robot with the deflection reference images of the real-life organism.

Findings

The proposed design framework in this study provides a foundation for multi-material multi-functional design for biomimicry and a wide range of applications in the manufacturing field and many other fields such as robotics and biomedical fields. The final optimized material design was 3D printed using a novel multi-material additive manufacturing method, magnetic field-assisted projection stereolithography. From the experimental tests, it was observed that the deflection curve and the deflection gradient of the printed robot within the adjacent regions of the body agreed well with the profiles taken from the real-life inchworm.

Originality/value

This paper presents a voxelized digital representation of the material distribution in printed parts, allowing spatially varied programming of material properties. The incorporation of reference images from living organisms into the design approach is a novel approach to transform image domain knowledge into the domain of engineering mechanical and material properties. Furthermore, the novel multi-material distribution design approach was validated through designing, 3D printing and prototyping an inchworm-inspired soft robot, which showed superior locomotion capability by mimicking the observed locomotion of the real inchworm.

Article
Publication date: 1 May 1983

In the last four years, since Volume I of this Bibliography first appeared, there has been an explosion of literature in all the main functional areas of business. This wealth of…

16284

Abstract

In the last four years, since Volume I of this Bibliography first appeared, there has been an explosion of literature in all the main functional areas of business. This wealth of material poses problems for the researcher in management studies — and, of course, for the librarian: uncovering what has been written in any one area is not an easy task. This volume aims to help the librarian and the researcher overcome some of the immediate problems of identification of material. It is an annotated bibliography of management, drawing on the wide variety of literature produced by MCB University Press. Over the last four years, MCB University Press has produced an extensive range of books and serial publications covering most of the established and many of the developing areas of management. This volume, in conjunction with Volume I, provides a guide to all the material published so far.

Details

Management Decision, vol. 21 no. 5
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 1 February 1991

John Gattorna, Abby Day and John Hargreaves

Key components of the logistics mix are described in an effort tocreate an understanding of the total logistics concept. Chapters includean introduction to logistics; the…

6140

Abstract

Key components of the logistics mix are described in an effort to create an understanding of the total logistics concept. Chapters include an introduction to logistics; the strategic role of logistics, customer service levels, channel relationships, facilities location, transport, inventory management, materials handling, interface with production, purchasing and materials management, estimating demand, order processing, systems performance, leadership and team building, business resource management.

Details

Logistics Information Management, vol. 4 no. 2
Type: Research Article
ISSN: 0957-6053

Keywords

Article
Publication date: 19 February 2021

Furkan Ulu, Ravi Pratap Singh Tomar and Ram Mohan

PolyJet technology allows printing complex multi-material composite configurations using Voxel digital designs' capability, thus allowing rapid prototyping of 3D printed…

Abstract

Purpose

PolyJet technology allows printing complex multi-material composite configurations using Voxel digital designs' capability, thus allowing rapid prototyping of 3D printed structural parts. This paper aims to investigate the processing and mechanical characteristics of composite material configurations formed from soft and hard materials with different distributions and sizes via voxel digital print design.

Design/methodology/approach

Voxels are extruded representations of pixels and represent different material information similar to each pixel representing colors in digital images. Each geometric region of a digitally designed part represented by a voxel can be printed with a different material. Multi-material composite part configurations were formed and rapidly prototyped using a PolyJet printer Stratasys J750. A design of experiments composite part configuration of a soft material (Tango Plus) within a hard material matrix (Vero Black) was studied. Composite structures with different hard and soft material distributions, but at the same volume fractions of hard and soft materials, were rapidly prototyped via PolyJet printing through developed Voxel digital printing designs. The tensile behavior of these formed composite material configurations was studied.

Findings

Processing and mechanical behavior characteristics depend on materials in different regions and their distributions. Tensile characterization obtained the fracture energy, tensile strength, modulus and failure strength of different hard-soft composite systems. Mechanical properties and behavior of all different composite material systems are compared.

Practical implications

Tensile characteristics correlate to digital voxel designs that play a critical role in additive manufacturing, in addition to the formed material composition and distributions.

Originality/value

Results clearly indicate that multi-material composite systems with various tensile mechanical properties could be created using voxel printing by engineering the design of material distributions, and sizes. The important parameters such as inclusion size and distribution can easily be controlled within all slices via voxel digital designs in PolyJet printing. Therefore, engineers and designers can manipulate entire morphology and material at each voxel level, and different prototype morphologies can be created with the same voxel digital design. In addition, difficulties from AM process with voxel printing for such material designs is addressed, and effective digital solutions were used for successful prototypes. Some of these difficulties are extra support material or printing the part with different dimension than it designed to achieve the final part dimension fidelity. Present work addressed and resolved such issued and provided cyber based software solutions using CAD and voxel discretization. All these increase broad adaptability of PolyJet AM in industry for prototyping and end-use.

Article
Publication date: 1 February 2005

Premaratne Samaranayake

The main purpose of this paper is to document the research on development of a conceptual framework for the supply chain. The aims of the research were to develop an integrated…

12705

Abstract

Purpose

The main purpose of this paper is to document the research on development of a conceptual framework for the supply chain. The aims of the research were to develop an integrated framework, and to provide a methodology for planning of many components in the supply chain such as suppliers, materials, resources, warehouses, activities and customers. The proposed framework is based on the unitary structuring technique where bills of materials, bills of warehouses, project networks and operations routings, in both manufacturing and distribution networks, are combined into a single structure.

Design/methodology/approach

The framework is described along with illustrated numerical examples in the manufacturing and distribution environments.

Findings

The numerical testing has shown that each network in the supply chain provides an integrated approach to planning and execution of many components, and is capable of providing visibility, flexibility and maintainability for further improvement in the supply chain environment.

Originality/value

The framework and planning approach developed in this research are new in the area of supply chain management and provide a foundation for planning, control and execution in supply chain in various industries.

Details

Supply Chain Management: An International Journal, vol. 10 no. 1
Type: Research Article
ISSN: 1359-8546

Keywords

Article
Publication date: 30 November 2021

Junchao Li, Yanan Yang, Ze Zhao and Ran Yan

The purpose of this study is to establish a finite element (FE) model with the random distribution of the Nylon12/hydroxyapatite (PA12/HA) composite material in selective laser…

Abstract

Purpose

The purpose of this study is to establish a finite element (FE) model with the random distribution of the Nylon12/hydroxyapatite (PA12/HA) composite material in selective laser sintering (SLS) process for considering the material anisotropy, which aims to obtain the law of temperature and stress changes in PA12/HA sintering.

Design/methodology/approach

By using python script in Abaqus, the FE model is established in which the two materials are randomly distributed and are assigned to their intrinsic temperature-dependent physical parameters. Molten pool sizes at various process parameters were evaluated in terms of numerical simulation and scanning electron microscope analysis, identifying a good agreement between them. Evaluation of temperature and stress distribution under the condition of different HA contents was also conducted.

Findings

It shows that the uneven distribution and quantity of HA powder play a vital role in stress concentration and temperature increase. Additionally, the influence of HA addition on the mechanical performance of SLS-fabricated parts shows that it is conducive to improve compressive strength when the HA ratio is less than 5% because an excess of HA powder tends to bring about a certain amount of microspores resulting in a decrease in part density.

Originality/value

The FE model of the PA12/HA composite material with parameterized random distribution in SLS can be applied in other similar additive manufacturing technologies. It provides a feasible guideline for the numerical analysis of properties of composite materials.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 1982

C.K. Walter

There has been no lack of criticism in the literature of accounting and logistics over the attention given, or not given, to distribution costs. Dobson stated flatly: “Distribution

Abstract

There has been no lack of criticism in the literature of accounting and logistics over the attention given, or not given, to distribution costs. Dobson stated flatly: “Distribution is neglected by cost accountants”. Only slightly less deprecating were Lambert and Armitage, who concluded that, for years, “control over distribution costs has been at best haphazard and, at worst, nonexistent”.

Details

International Journal of Physical Distribution & Materials Management, vol. 12 no. 5
Type: Research Article
ISSN: 0269-8218

Article
Publication date: 5 May 2015

Mica Grujicic, Subrahmanian Ramaswami, Jennifer Snipes, Rohan Galgalikar, Ramin Yavari, Chian-Fong Yen, Bryan Cheeseman and Jonathan Montgomery

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been…

Abstract

Purpose

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic limit (i.e. penetration resistance) of the weld.

Design/methodology/approach

The original model consists of five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: electro-dynamics of the welding-gun; radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and spatial distribution of the as-welded material mechanical properties. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones.

Findings

The upgraded GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to establish, using computational modeling, functional relationships between the GMAW process parameters and the mechanical properties controlling the ballistic limit of the resulting weld.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 April 2015

Saeed Maleki Jebeli and Masoud Shariat Panahi

The purpose of this paper is to introduce an evolutionary heuristic method for simultaneous optimization of topology and material property distribution of functionally graded (FG…

Abstract

Purpose

The purpose of this paper is to introduce an evolutionary heuristic method for simultaneous optimization of topology and material property distribution of functionally graded (FG) structures under a prescribed loading condition.

Design/methodology/approach

The proposed procedure is inspired by heuristic nature of bi-directional evolutionary structural optimization (BESO) and genetic algorithm (GA). The optimization algorithm is developed in the context of minimum compliance (maximum stiffness) design problem. The problem is modeled by means of finite element method (FEM). The element-wise material volume fractions and elements’ status (i.e. existence or nonexistence in FE model) are introduced as design variables. After FE analysis, sensitivities are obtain and filtered according to BESO. Having determined sensitivities, by means of a heuristic scheme combined by GA, topology and material property distribution for the next cycle of optimization are determined by updating design variables.

Findings

The adopted method has been tested by means of several examples previously reported in literature. The comparison showed the superiority of the proposed method against its rival in terms of relative reduction in compliance, smoother material property distribution and computational cost.

Originality/value

The value of the described method lies in its simple (yet efficient) nature. In contrast with its only rival in literature which more relied on mathematical approach, proposed method uses a series of logic-based heuristic ideas to drive reasonable solutions but with far less computational cost.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2018

Nicholas Alexander Meisel, David A. Dillard and Christopher B. Williams

Material jetting approximates composite material properties through deposition of base materials in a dithered pattern. This microscale, voxel-based patterning leads to macroscale…

Abstract

Purpose

Material jetting approximates composite material properties through deposition of base materials in a dithered pattern. This microscale, voxel-based patterning leads to macroscale property changes, which must be understood to appropriately design for this additive manufacturing (AM) process. This paper aims to identify impacts on these composites’ viscoelastic properties due to changes in base material composition and distribution caused by incomplete dithering in small features.

Design/methodology/approach

Dynamic mechanical analysis (DMA) is used to measure viscoelastic properties of two base PolyJet materials and seven “digital materials”. This establishes the material design space enabled by voxel-by-voxel control. Specimens of decreasing width are tested to explore effects of feature width on dithering’s ability to approximate macroscale material properties; observed changes are correlated to multi-material distribution via an analysis of ingoing layers.

Findings

DMA shows storage and loss moduli of preset composites trending toward the iso-strain boundary as composition changes. An added iso-stress boundary defines the property space achievable with voxel-by-voxel control. Digital materials exhibit statistically significant changes in material properties when specimen width is under 2 mm. A quantified change in same-material droplet groupings in each composite’s voxel pattern shows that dithering requires a certain geometric size to accurately approximate macroscale properties.

Originality/value

This paper offers the first quantification of viscoelastic properties for digital materials with respect to material composition and identification of the composite design space enabled through voxel-by-voxel control. Additionally, it identifies a significant shift in material properties with respect to feature width due to dithering pattern changes. This establishes critical design for AM guidelines for engineers designing with digital materials.

Details

Rapid Prototyping Journal, vol. 24 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 86000