Search results

1 – 10 of over 84000
Article
Publication date: 21 February 2022

Kyudong Kim, Heena Noh, Kijung Park, Hyun Woo Jeon and Sunghoon Lim

This study aims to model power demand and energy consumption of fused filament fabrication (FFF) for carbon fiber-reinforced polyether-ether-ketone (CFR-PEEK) based on a material

Abstract

Purpose

This study aims to model power demand and energy consumption of fused filament fabrication (FFF) for carbon fiber-reinforced polyether-ether-ketone (CFR-PEEK) based on a material addition rate (MAR), which is affected by process parameter changes in an FFF machine. Moreover, a virtual additive manufacturing (AM) plant handling multiple FFF machines and part designs is simulated to compare the energy and production dynamics of operational strategies that treat part orders differently based on their inherent MAR.

Design/methodology/approach

A full-factorial design of experiments considering major FFF parameters (i.e., layer thickness and printing speed) is planned to fabricate CFR-PEEK samples for each process parameter combination. Then, the MAR of each process parameter combination is calculated to derive regression models for average power demand and total energy consumption. Furthermore, a discrete-event simulation model for a virtual AM system of aircraft parts is built to analyze changes in power demand and energy consumption along with order lead time and production volume under three operational strategies (i.e., higher MAR first-out, first-in-first-out, and lower MAR first-out).

Findings

The MAR of FFF for CFR-PEEK plays a key role in energy dynamics in which a decrease in energy consumption dominates over an increase in power demand as the MAR increases. Furthermore, preferentially processing parts with a higher MAR in the AM system is the most beneficial strategy in both energy consumption and productivity.

Originality/value

The findings from this study show that the energy performance of CFR-PEEK applications in FFF should be understood with the MAR of an AM system because the impact of AM complexity on energy performance can be operationally controlled by managing the MAR of part orders for the entire AM system.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 20 October 2015

Mohammad Shamsuddoha

Contemporary literature reveals that, to date, the poultry livestock sector has not received sufficient research attention. This particular industry suffers from unstructured…

Abstract

Contemporary literature reveals that, to date, the poultry livestock sector has not received sufficient research attention. This particular industry suffers from unstructured supply chain practices, lack of awareness of the implications of the sustainability concept and failure to recycle poultry wastes. The current research thus attempts to develop an integrated supply chain model in the context of poultry industry in Bangladesh. The study considers both sustainability and supply chain issues in order to incorporate them in the poultry supply chain. By placing the forward and reverse supply chains in a single framework, existing problems can be resolved to gain economic, social and environmental benefits, which will be more sustainable than the present practices.

The theoretical underpinning of this research is ‘sustainability’ and the ‘supply chain processes’ in order to examine possible improvements in the poultry production process along with waste management. The research adopts the positivist paradigm and ‘design science’ methods with the support of system dynamics (SD) and the case study methods. Initially, a mental model is developed followed by the causal loop diagram based on in-depth interviews, focus group discussions and observation techniques. The causal model helps to understand the linkages between the associated variables for each issue. Finally, the causal loop diagram is transformed into a stock and flow (quantitative) model, which is a prerequisite for SD-based simulation modelling. A decision support system (DSS) is then developed to analyse the complex decision-making process along the supply chains.

The findings reveal that integration of the supply chain can bring economic, social and environmental sustainability along with a structured production process. It is also observed that the poultry industry can apply the model outcomes in the real-life practices with minor adjustments. This present research has both theoretical and practical implications. The proposed model’s unique characteristics in mitigating the existing problems are supported by the sustainability and supply chain theories. As for practical implications, the poultry industry in Bangladesh can follow the proposed supply chain structure (as par the research model) and test various policies via simulation prior to its application. Positive outcomes of the simulation study may provide enough confidence to implement the desired changes within the industry and their supply chain networks.

Details

Sustaining Competitive Advantage Via Business Intelligence, Knowledge Management, and System Dynamics
Type: Book
ISBN: 978-1-78560-707-3

Keywords

Article
Publication date: 1 December 1957

A method extensively used in the production of optically flat and finely finished surfaces is that of lapping the surface upon a plate using a loose abrasive mixed into a slurry…

Abstract

A method extensively used in the production of optically flat and finely finished surfaces is that of lapping the surface upon a plate using a loose abrasive mixed into a slurry form with a carrying fluid. If the surfaces finished in this way are in continuous or intermittent sliding contact, it is the author's opinion that any abrasives retained in their surfaces will affect surface wear. This paper reported on some exploratory work to indicate the degree of embedment of abrasive in certain materials lapped by hand.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 17 May 2021

Abhishek Vyas and Kawaljit Singh Randhawa

The purpose of this study is to improve the mechanical and tribological performance of polypropylene (PP) material. The influence of hexagonal boron nitride (h-BN) microparticles…

Abstract

Purpose

The purpose of this study is to improve the mechanical and tribological performance of polypropylene (PP) material. The influence of hexagonal boron nitride (h-BN) microparticles on mechanical and tribological properties of PP/polyamide 6 (nylon 6) (PA6) blend has been investigated in this paper.

Design/methodology/approach

Tensile strength, elongation, elastic modulus and Rockwell hardness were measured to identify the mechanical properties of materials. Coefficient of friction (COF) and wear rates of materials were measured with the help of a pin-on-disc tribometer to check the tribological behavior of blend and composite materials.

Findings

As a result, a small decrease in tensile strength and elongation and improvement in elastic modulus were found for PP/PA6 and PP/PA6/h-BN composite compared to pure PP. The wear rate of PP/PA6 blend and PP/PA6/h-BN composite was found low compared to pure PP matrix, while the COF of PP/PA6 blend was found slightly higher owing to the presence of harder PA6 matrix which was then improved by the h-BN filler reinforcement in PP/PA6/h-BN composite. The addition of PA6 in PP improved the wear rate of PP by 8–24%, whereas the addition of h-BN microparticles improved the wear rate by 22–50% and 24–44% compared to pure PP and PP/PA6 blend, respectively, in different parameters.

Originality/value

Modulus of elasticity and hardness of pure PP was enhanced by blending with PA6 and was further improved by h-BN fillers. The addition of PA6 in PP improved the wear rate, while h-BN fillers were found effective in reducing the COF by generating smooth thin lubricating film.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 May 2023

Berkay Ergene, Gökmen Atlıhan and Ahmet Murat Pinar

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and…

Abstract

Purpose

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and geometrical property as tapered angle (0, 0.25 and 0.50) on vibrational behavior of 3D-printed polyethylene terephthalate glycol (PET-G) tapered beams with fused filament fabrication (FFF) method.

Design/methodology/approach

In this performance, all test specimens were modeled in AutoCAD 2020 software and then 3D-printed by FFF. The effects of printing parameters on the natural frequencies of 3D-printed PET-G beams with different tapered angles were also analyzed experimentally, and numerically (finite element analysis) via Ansys APDL 16 program. In addition to vibrational properties, tensile strength, elasticity modulus, hardness, and surface roughness of the 3D-printed PET-G parts were examined.

Findings

It can be stated that average surface roughness values ranged between 1.63 and 6.91 µm. In addition, the highest and lowest hardness values were found as 68.6 and 58.4 Shore D. Tensile strength and elasticity modulus increased with the increase of infill rate and decrease of the layer height. In conclusion, natural frequency of the 3D-printed PET-G beams went up with higher infill rate values though no critical change was observed for layer height and a change in tapered angle fluctuated the natural frequency values significantly.

Research limitations/implications

The influence of printing parameters on the vibrational properties of 3D-printed PET-G beams with different tapered angles was carried out and the determination of these effects is quite important. On the other hand, with the addition of glass or carbon fiber reinforcements to the PET-G filaments, the material and vibrational properties of the parts can be examined in future works.

Practical implications

As a result of this study, it was shown that natural frequencies of the 3D-printed tapered beams from PET-G material can be predicted via finite element analysis after obtaining material data with the help of mechanical/physical tests. In addition, the outcome of this study can be used as a reference during the design of parts that are subjected to vibration such as turbine blades, drone arms, propellers, orthopedic implants, scaffolds and gears.

Social implications

It is believed that determination of the effect of the most used 3D printing parameters (layer height and infill rate) and geometrical property of tapered angle on natural frequencies of the 3D-printed parts will be very useful for researchers and engineers; especially when the importance of resonance is known well.

Originality/value

When the literature efforts are scanned in depth, it can be seen that there are many studies about mechanical or wear properties of the 3D-printed parts. However, this is the first study which focuses on the influences of the both 3D printing parameters and tapered angles on the vibrational behaviors of the tapered PET-G beams produced with material extrusion based FFF method. In addition, obtained experimental results were also supported with the performed finite element analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 August 2019

Sara Jebbor, Abdellatif El Afia and Raddouane Chiheb

This paper aims to propose an approach by human and material resources combination to reduce hospitals crowding. Hospitals crowding is becoming a serious problem. Many research…

Abstract

Purpose

This paper aims to propose an approach by human and material resources combination to reduce hospitals crowding. Hospitals crowding is becoming a serious problem. Many research works present several methods and approaches to deal with this problem. However, to the best of the authors’ knowledge – after a deep reading of literature – in all the proposed approaches, human and material resources are studied separately while they must be combined (to a given number of material resources an optimal number of human resources must be assigned and vice versa) to reflect reality and provide better results.

Design/methodology/approach

Hospital inpatient unit is chosen as framework. This unit crowding reduction is carried out by its capacity increasing. Indeed, inpatient unit modeling is performed to find the adequate combinations of human and material resources numbers insuring this unit stability and providing optimal service rates. At first, inpatient unit is modeled using queuing networks and considering only two resources (beds and nurses). Then, the obtained service rate formula is improved by including other resources and parameters using Baskett, Chandy, Muntz and Palecios (BCMP) queuing networks. This work is applied to “Princess Lalla Meryem” hospital inpatient unit.

Findings

Results are patients’ average number reduction by an average (in each block) of three patients, patients’ average waiting time reduction by an average of 9.98 h and non-admitted patients (to inpatient wards) access percentage of 39.26 per cent on average.

Originality/value

Previous works focus their studies on either human resources or material resources. Only a few works study both resources types, but separately. The context of those studies does not meet the real hospital context (where human resources are combined with material resources). Therefore, the provided results are not very reliable. In this paper, an approach by human and material resources combination is proposed to increase inpatient unit care capacity. Indeed, this approach consists of developing inpatient unit service rate formula in terms of human and material resources numbers.

Details

International Journal of Pervasive Computing and Communications, vol. 15 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 January 1978

The Equal Pay Act 1970 (which came into operation on 29 December 1975) provides for an “equality clause” to be written into all contracts of employment. S.1(2) (a) of the 1970 Act…

1371

Abstract

The Equal Pay Act 1970 (which came into operation on 29 December 1975) provides for an “equality clause” to be written into all contracts of employment. S.1(2) (a) of the 1970 Act (which has been amended by the Sex Discrimination Act 1975) provides:

Details

Managerial Law, vol. 21 no. 1
Type: Research Article
ISSN: 0309-0558

Article
Publication date: 11 March 2014

Marlon Wesley Machado Cunico and Jonas de Carvalho

Over the last several years, the range of applications for the photopolymerisation process has been steadily increasing, especially in such areas as rapid prototyping, UV inks, UV…

Abstract

Purpose

Over the last several years, the range of applications for the photopolymerisation process has been steadily increasing, especially in such areas as rapid prototyping, UV inks, UV coats and orthodontic applications. In spite of this increase, there are still several challenges to be overcome when the application concerns materials formulation and their mechanical properties. In this context, the main aim of this work is to outline the contribution of the formulation components for the parameters of the photopolymerisation process and the resultant mechanical properties of the material.

Design/methodology/approach

For this research, the authors have applied multivariable analysis methods, which allow the identification of principal conclusions based on experimental results. For the experimental analysis, the authors applied design of experiment, while the material formulation was based on methyl methacrylate as a monomer, Omnrad 2500 as a photoinitiator and trimethylolpropane triacrylate as an oligomer. The authors analysed the photopolymerisation rate, viscosity, mechanical tensile strength, flexural stiffness and softening. These results comprise a multiobjective optimisation study to identify the ideal material formulation for additive manufacturing applications. The values chosen for the materials were the following: the initiator concentration was 2 and 5% wt., the monomer volume was 5 and 10 ml and the oligomer volume was 3 and 5 ml. To analyse the system kinetics and the photopolymerisation rate, the authors identified the polymer conversion rate through a photometric-cum-gravimetric method with a wavelength of 390 nm at the peak intensity. For the softening test, the authors identified the stiffness of the material as a function of temperature, characterising the thermal-mechanical behaviour of the material and determining its degree of crystallinity (cross-linking). Additionally, the authors performed an optimisation to maximise the mechanical tensile strength, flexural stiffness, softening temperature and photopolymerisation rate while minimising the viscosity.

Findings

Based on these studies, it was possible to identify the influence of the monomer/oligomer ratio and the initiator concentration as function of polymerisation rate, viscosity, mechanical tensile strength, stiffness and softening of the material. It was also possible to determine the photopolymerisation rate in addition to the constants of propagation and termination. As a result of these studies, the authors identified a material formulation that resulted in a softening temperature greater than 70°C, while the viscosity of material remained lower than 3 cP. The mechanical ultimate tensile strength was between 10 and 50 MPa, and the stiffness was between 1.6 and 5.8 GPa. The effect of cross-linking on the process highlighted the interaction between the monomer/oligomer ratio and the initiator. The contribution of the initiator and the inhibitor to the polymerisation rate was identified via a numerical model, which allows the prediction of the material's behaviour in different process conditions, as such curing time and penetration depth.

Originality/value

The main value of this work is to show the possibility of optimized photopolymerizable systems through an experimental approach as a function of the mechanical properties of material. In addition, it emphasised the possibility of predicting the material behaviour in front of different situations.

Details

Rapid Prototyping Journal, vol. 20 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 February 2016

Mehmet Bagci and Huseyin Imrek

This study aims to examine solid particle erosion behavior of novel hybrid composite materials where borax (B2O3) particles (∼150 μm) were added to glass fabric and epoxy resin at…

Abstract

Purpose

This study aims to examine solid particle erosion behavior of novel hybrid composite materials where borax (B2O3) particles (∼150 μm) were added to glass fabric and epoxy resin at an amount of 15 and 30 per cent.

Design/methodology/approach

The tests that involved slightly rounded and irregular Al2O3 particles having two erodent sizes (200, 400 μm) were conducted at these operational conditions; namely, three impact velocities (23, 34, 53 m/s), two fabric directions (0/90/0, 45/−45/45) and three impingement angles (30°, 60°, 90°). In addition, the design of experiments, which utilizes Taguchi’s robust orthogonal arrays approach, was used and an optimum parameter combination was established, which had a minimum erosion rate. Moreover, scanning electron microscope and X-ray diffraction views show the visual effect of filler material.

Findings

All test specimens regardless of their dissimilar characteristics displayed maximum erosion rate at 30° impingement angle. Test specimens with 45/−45/45 fabric direction are more wear-resistant than their counterparts with 0/90/0 fabric direction. The erosion wear of glass fabric reinforced epoxy (GF/EP) composites whose matrix had 15 per cent addition of borax particles was higher than that of neat GF/EP composites. In addition, new composite material formed by including borax particles at a rate of 30 per cent of resin leads to a reduction in erosion rates.

Originality/value

While fabric-reinforced polymers take place in most of the studies conducted on erosive wear of composites, studies involving erosion on composites with filler materials can hardly be encountered.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 1997

James L. Price

Addresses the standardization of the measurements and the labels for concepts commonly used in the study of work organizations. As a reference handbook and research tool, seeks to…

15992

Abstract

Addresses the standardization of the measurements and the labels for concepts commonly used in the study of work organizations. As a reference handbook and research tool, seeks to improve measurement in the study of work organizations and to facilitate the teaching of introductory courses in this subject. Focuses solely on work organizations, that is, social systems in which members work for money. Defines measurement and distinguishes four levels: nominal, ordinal, interval and ratio. Selects specific measures on the basis of quality, diversity, simplicity and availability and evaluates each measure for its validity and reliability. Employs a set of 38 concepts ‐ ranging from “absenteeism” to “turnover” as the handbook’s frame of reference. Concludes by reviewing organizational measurement over the past 30 years and recommending future measurement reseach.

Details

International Journal of Manpower, vol. 18 no. 4/5/6
Type: Research Article
ISSN: 0143-7720

Keywords

1 – 10 of over 84000