Search results

1 – 10 of over 11000
Article
Publication date: 1 July 2006

Paulo Bartolo, Joel Vasco, Bruno Silva and Carlos Galo

Laser milling is a recent process in mould making, providing several advantages over traditional mould making technologies by reducing manufacturing time, shortening the number of…

1259

Abstract

Purpose

Laser milling is a recent process in mould making, providing several advantages over traditional mould making technologies by reducing manufacturing time, shortening the number of machining operations and avoiding expensive electrodes. This paper investigates the influence of the operating conditions on both the surface quality and material removal for two types of materials commonly used in mould making.

Design/methodology/approach

Laser scanning strategies and operating parameters like scanning speed and laser frequency and power were tested, regarding surface quality and material removal rate. The most representative parameter of the real surface quality, Rk, the core roughness parameter, is used to characterise the surface finishing on all cavities.

Findings

The findings of this research work suggest that it is possible to significantly reduce processing time by increasing the hatch spacing up to a value close to the laser beam spot diameter, without compromising surface quality. Lower pulse frequencies and laser power are more appropriate whenever surface quality is an issue. Higher material removal rates are achieved by increasing both the pulse frequency till an optimum value and laser power. The increase of scanning speed reduces the material removal rate by decreasing the overlap degree between individual laser pulses.

Originality/value

The originality is to correlate the influence of the operating conditions of laser milling on both the surface quality and material removal for different types of materials.

Details

Assembly Automation, vol. 26 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 February 2014

De-Xing Peng

Chemical mechanical polishing (CMP) has attracted much attention recently because of its importance as a nano-scale finishing process for high value-added large components that…

Abstract

Purpose

Chemical mechanical polishing (CMP) has attracted much attention recently because of its importance as a nano-scale finishing process for high value-added large components that are used in the aerospace industry. The paper aims to discuss these issues.

Design/methodology/approach

The characteristics of aluminum nanoparticles slurry including oxidizer, oxidizer contents, abrasive contents, slurry flow rate, and polishing time on aluminum nanoparticles CMP performance, including material removal amount and surface morphology were studied.

Findings

Experimental results indicate that the CMP performance depends strongly on the oxidizer, oxidizer contents, and abrasive contents. Surface polished by slurries that contain nano-Al abrasives had a lower surface average roughness (Ra), lower topographical variations and less scratching. The material removal amount and the Ra were 124 and 7.61 nm with appropriate values of the process parameters of the oxidizer, oxidizer content, abrasive content, slurry flow rate and polishing time which were H2O2, 2 wt.%, 1 wt.%, 10 ml/min, 5 min, respectively.

Originality/value

Based on SEM determinations of the process parameters for the polishing of the surfaces, the CMP mechanism was deduced preliminarily.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 November 2020

S. Madhu and M. Balasubramanian

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish…

Abstract

Purpose

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish with high-level precision and minimization of waste. Among the various advanced machining processes, abrasive jet machining (AJM) is one of the non-traditional machining techniques used for various applications such as polishing, deburring and hole making. Hence, an overview of the investigations done on carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GRFP) composites becomes important.

Design/methodology/approach

Discussion on various approaches to AJM, the effect of process parameters on the glass fiber and carbon fiber polymeric composites are presented. Kerf characteristics, surface roughness and various nozzle design were also discussed.

Findings

It was observed that abrasive jet pressure, stand-off distance, traverse rate, abrasive size, nozzle diameter, angle of attack are the significant process parameters which affect the machining time, material removal rate, top kerf, bottom kerf and kerf angle. When the particle size is maximum, the increased kinetic energy of the particle improves the penetration depth on the CFRP surface. As the abrasive jet pressure is increased, the cutting process is enabled without severe jet deflection which in turn minimizes the waviness pattern, resulting in a decrease of the surface roughness.

Research limitations/implications

The review is limited to glass fiber and carbon fiber polymeric composites.

Practical implications

In many applications, the use of composite has gained wide acceptance. Hence, machining of the composite need for the study also has gained wide acceptance.

Social implications

The usage of composites reduces the usage of very costly materials of high density. The cost of the material also comes down.

Originality/value

This paper is a comprehensive review of machining composite with abrasive jet. The paper covers in detail about machining of only GFRP and CFRP composites with various nozzle designs, unlike many studies which has focused widely on general AJM of various materials.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 March 2020

Harvinder Singh, Vinod Kumar and Jatinder Kapoor

This study aims to investigate the influence of process parameters of wire electrical discharge machining (WEDM) of Nimonic75. Nimonic75 is a Nickel-based alloy mostly used in the…

Abstract

Purpose

This study aims to investigate the influence of process parameters of wire electrical discharge machining (WEDM) of Nimonic75. Nimonic75 is a Nickel-based alloy mostly used in the aerospace industry for its strength at high temperature.

Design/methodology/approach

One factor at a time (OFAT) approach has been used to perform the experiments. Pulse on time, pulse off time, peak current and servo voltage were chosen as input process parameters. Cutting speed, material removal rate and surface roughness (Ra) were selected as output performance characteristics.

Findings

Through experimental work, the effect of process parameters on the response characteristics has been found. Results identified the most important parameters to maximize the cutting speed and material removal rate and minimize Ra.

Originality/value

Very limited research work has been done on WEDM of Nickel-based alloy Nimonic75. Therefore, the aim of this paper to conduct preliminary experimentation for identifying the parameters, which influence the response characteristics such as material removal rate, cutting speed, Ra, etc. during WEDM of Nickel-based alloy (Nimonic75) using OFAT approach and found the machinability of Nimonic75 for further exhaustive experimentation work.

Article
Publication date: 18 August 2022

Shailendra Chauhan, Rajeev Trehan and Ravi Pratap Singh

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting…

Abstract

Purpose

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting parameters. The various impact of cutting parameters on chip morphology was also analyzed. Superalloys, often referred to as heat-resistant alloys, have exceptional tensile, ductile and creep strength at high operating temperatures and good fatigue strength, and often better corrosion and oxidation resistance at extreme heat. Because of these qualities, these alloys account for more than half of the weight of sophisticated aviation, biomedical and thermal power plants today. Inconel X-750 is a high-temperature nickel-based superalloy that is hard to machine because of its extensive properties. At last, the discussion regarding the tool wear mechanism was analyzed and discussed in this article.

Design/methodology/approach

The machining parameters for the study are cutting speed, feed rate and depth of cut. One factor at a time approach was implemented to investigate the effect of cutting parameters on the cutting forces, surface roughness and material removal rate. The scatter plot was plotted between cutting parameters and target functions (cutting forces, surface roughness and material removal rate). The six levels of cutting speed, feed rate and depth of cut were taken as cutting parameters.

Findings

The cutting forces are primarily affected by the cutting parameters, tool geometry, work material etc. The maximum forces Fx were encountered at 10 mm/min cutting speed, 0.15 mm/rev feed rate and 0.4 mm depth of cut, further maximum forces Fy were attained at 10 mm/min cutting speed, 0.25 mm/rev feed rate and 0.4 mm depth of cut and maximum forces Fz were attained at 50 mm/min cutting speed, 0.05 mm/rev feed rate and 0.4 mm depth of cut. The maximum surface roughness value was observed at 40 mm/min cutting speed, 0.15 mm/rev feed rate and 0.5 mm depth of cut.

Originality/value

The effect of machining parameters on cutting forces, surface roughness, chip morphology and tool wear for milling of Inconel X-750 high-temperature superalloy is being less researched in the present literature. Therefore, this research paper will give a direction for researchers for further studies to be carried out in the domain of high-temperature superalloys. Furthermore, the different tool wear mechanisms at separate experimental trials have been explored to evaluate and validate the process performance by conducting scanning electron microscopy analysis. Chip morphology has also been evaluated and analyzed under the variation of selected process inputs at different levels.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 July 2023

Kashif Noor, Mubashir Ali Siddiqui and Amir Iqbal Syed

This study was conducted to analyze the effects of machining parameters on the specific energy consumption in the computerized numerical control lathe turning operation of a…

Abstract

Purpose

This study was conducted to analyze the effects of machining parameters on the specific energy consumption in the computerized numerical control lathe turning operation of a hardened alloy steel roll at low cutting speeds. The aim was to minimize its consumption.

Design/methodology/approach

The design matrix was based on three variable factors at three levels. Response surface methodology was used for the analysis of experimental results. Optimization was carried out by using the desirability function and genetic algorithm. A multiple regression model was used for relationship build-up.

Findings

According to desirability function, genetic algorithm and multiple regression analysis, optimal machining parameters were cutting speed 40 m/min, feed 0.2 mm/rev and depth of cut 0.50 mm, which resulted in minimal specific energy consumption of 0.78, 0.772 and 0.78 kJ/mm3, respectively. Correlation analysis and multiple regression model found a quadratic relationship between specific energy consumption with power consumption and material removal rate.

Originality/value

In the past, many researchers have developed mathematical models for specific energy consumption, but these models were developed at high cutting speed, and a majority of the models were based on the material removal rate as the independent variable. This research work developed a mathematical model based on the machining parameters as an independent variable at low cutting speeds, for a new type of large-sized hardened alloy steel roll. A multiple regression model was developed to build a quadratic relationship of specific energy consumption with power consumption and material removal rate. This work has a practical application in hot rolling industry.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 August 2021

Ravi Pratap Singh, Narendra Kumar, Ashutosh Kumar Gupta and Madhusudan Painuly

The purpose of this paper is to investigate experimentally the effect of several input process factors, namely, feed rate, spindle speed, ultrasonic power and coolant pressure, on…

Abstract

Purpose

The purpose of this paper is to investigate experimentally the effect of several input process factors, namely, feed rate, spindle speed, ultrasonic power and coolant pressure, on hole quality measures (penetration rate [PR] and chipping diameter [CD]) in rotary mode ultrasonic drilling of macor bioceramic material.

Design/methodology/approach

The main experiments were planned using the response surface methodology (RSM). Scanning electron microscopy was also used to examine and study the microstructure of machined samples. This study revealed the existence of dominant brittle fracture and little plastic flow that resulted in a material loss from the base work surface. Experiment findings have shown the dependability and adequacy of the proposed mathematical model.

Findings

The percentage of brittle mode deformation rises as the penetration depth of abrasives increases (at increasing levels of feed rate). This was due to the fact that at greater depths of indentation, material loss begins in the form of bigger chunks and develops inter-granular fractures. These stated causes have provided an additional advantage to increasing the CD over the machined rod of bioceramic. The desirability method was also used to optimize multi-response measured responses (PR and CD). The mathematical model created using the RSM method will be very useful in industrial revelation. Furthermore, the investigated answers’ particle swarm optimization (PSO) and teacher-learner-based optimization (TLBO) make the parametric analysis more relevant and productive for real-life industrial practices.

Originality/value

Macor bioceramic has been widely recognized as one of the most highly demanded innovative dental ceramics, receiving expanded industry approval because of its outstanding and superior characteristics. However, effective and efficient processing remains a problem. Among the available contemporary machining methods introduced for processing typical and advanced materials, rotary mode ultrasonic machining has been identified as one of the best suitable candidates for precise processing of macor bioceramics, as this process produces thermal damage-free profiles, as well as high accuracy and an increased material removal rate. The optimized combined setting obtained using PSO is feed rate = 0.16 mm/s, spindle speed = 4,500 rpm, ultrasonic power = 60% and coolant pressure = 280 kPa with the value of fitness function is 0.0508. The optimized combined setting obtained using TLBO is feed rate = 0.06 mm/s, spindle speed = 2,500 rpm, ultrasonic power = 60% and coolant pressure = 280 kPa with the value of fitness function is 0.1703.

Details

World Journal of Engineering, vol. 19 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 December 2018

Kanwal Jit Singh, Inderpreet Singh Ahuja and Jatinder Kapoor

This review paper reveals the literature on ultrasonic, chemical-assisted ultrasonic and rotary ultrasonic machining (USM) of glass material. The purpose of this review paper is…

Abstract

Purpose

This review paper reveals the literature on ultrasonic, chemical-assisted ultrasonic and rotary ultrasonic machining (USM) of glass material. The purpose of this review paper is to understand and describe the working principle, mechanism of material removal, experimental investigation, applications and influence of input parameters on machining characteristics. The literature reveals that the ultrasonic machines have been generally preferred for the glass and brittle work materials. Some other non-traditional machining processes may thermally damage the work surface. Through these USM, neither thermal effects nor residual stresses have been generated on the machined surface.

Design/methodology/approach

Various input parameters have the significant role in machine performance characteristics. For the optimization of output response, several input parameters have been critically investigated by the various researcher.

Findings

Some advance types of glasses such as polycarbonate bulletproof glass, acrylic heat-resistant glass and glass-clad polycarbonate bulletproof glass still need some further investigation because these materials have vast applications in automobile, aerospace and space industries.

Originality/value

Review paper will be beneficial for industrial application and the various young researcher. Paper reveals the detail literature review on traditional ultrasonic, chemical assisted ultrasonic and rotary USM of glass and glass composite materials.

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2018

Ramesh S., M.P. Jenarthanan and Bhuvanesh Kanna A.S.

The purpose of this paper is to investigate the performance of powder-mixed electric discharge machining (PMEDM) using three different powders which are aluminium (Al), silicon…

Abstract

Purpose

The purpose of this paper is to investigate the performance of powder-mixed electric discharge machining (PMEDM) using three different powders which are aluminium (Al), silicon carbide (SiC) and aluminium oxide (Al2O3). Besides that, the influence of different tool materials was also studied in this experimental investigation. Hence, the work material selected for this purpose was AISI P20 steel and tool materials were copper, brass and tungsten. The performance measures considered in this work were material removal rate (MRR), tool wear rate and radial over cut (ROC).

Design/methodology/approach

The process variables considered in this study were powder types, powder concentration, tool materials, peak current and pulse on time. The experimental design, based on Taguchi’s L27 orthogonal array, was adopted to conduct experiments. Significant parameters were identified by performing the analysis of variance on the experimental data.

Findings

Based on the analysis of results, it was observed that copper tool combined with Al powder produced maximum MRR (58.35 mm3/min). Similarly, the Al2O3 powder combined with tungsten tool has resulted least ROC (0.04865 mm). It was also observed that wear rate of tungsten tool was very low (0.0145 mm3/min).

Originality/value

The experimental investigation of PMEDM involving three different powders (Al, SiC and Al2O3) was not attempted before. Moreover, the study of influence of different tool materials (Cu, brass and W) together with the different powders on the electric discharge machining performance was very limited.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 August 2019

Husandeep Sharma, Khushdeep Goyal and Sunil Kumar

Tool steel (AISI D3) is a preferred material for industrial usage. Some of the typical applications of D3 tool steel are blanking and forming dies, forming rolls, press tools and…

Abstract

Purpose

Tool steel (AISI D3) is a preferred material for industrial usage. Some of the typical applications of D3 tool steel are blanking and forming dies, forming rolls, press tools and punches bushes. It is used under conditions where high resistance to wear or to abrasion is required and also for resistance to heavy pressure rather than to sudden shock is desirable. It is a high carbon and high chromium steel. Therefore, wire electric discharge machining (WEDM) is used to machine this tool steel. The paper aims to discuss these issues.

Design/methodology/approach

The present experimental investigation evaluates the influence of cryogenically treated wires on material removal rate (MRR) and surface roughness (SR) for machining of AISI D3 steel using the WEDM process. Two important process responses MRR and SR have been studied as a function of four different control parameters, namely pulse width, time between two pulses, wire mechanical tension and wire feed rate.

Findings

It was found that pulse width was the most significant parameter which affects the MRR and SR. Better surface finish was obtained with cryogenically treated zinc coated wire than brass wire.

Originality/value

The review of the literature indicates that there is limited published work on the effect of machining parameters in WEDM in cryogenic treated wires. Therefore, in this research work, it was decided to evaluate the effect of cryogenically treated wires on WEDM.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 11000