Search results

1 – 10 of over 11000
Article
Publication date: 10 December 2019

Xiaoming Zhang, Mingming Meng, Xiaoling Sun and Yu Bai

With the advent of the era of Big Data, the scale of knowledge graph (KG) in various domains is growing rapidly, which holds huge amount of knowledge surely benefiting the…

Abstract

Purpose

With the advent of the era of Big Data, the scale of knowledge graph (KG) in various domains is growing rapidly, which holds huge amount of knowledge surely benefiting the question answering (QA) research. However, the KG, which is always constituted of entities and relations, is structurally inconsistent with the natural language query. Thus, the QA system based on KG is still faced with difficulties. The purpose of this paper is to propose a method to answer the domain-specific questions based on KG, providing conveniences for the information query over domain KG.

Design/methodology/approach

The authors propose a method FactQA to answer the factual questions about specific domain. A series of logical rules are designed to transform the factual questions into the triples, in order to solve the structural inconsistency between the user’s question and the domain knowledge. Then, the query expansion strategies and filtering strategies are proposed from two levels (i.e. words and triples in the question). For matching the question with domain knowledge, not only the similarity values between the words in the question and the resources in the domain knowledge but also the tag information of these words is considered. And the tag information is obtained by parsing the question using Stanford CoreNLP. In this paper, the KG in metallic materials domain is used to illustrate the FactQA method.

Findings

The designed logical rules have time stability for transforming the factual questions into the triples. Additionally, after filtering the synonym expansion results of the words in the question, the expansion quality of the triple representation of the question is improved. The tag information of the words in the question is considered in the process of data matching, which could help to filter out the wrong matches.

Originality/value

Although the FactQA is proposed for domain-specific QA, it can also be applied to any other domain besides metallic materials domain. For a question that cannot be answered, FactQA would generate a new related question to answer, providing as much as possible the user with the information they probably need. The FactQA could facilitate the user’s information query based on the emerging KG.

Details

Data Technologies and Applications, vol. 54 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 1 May 2006

Jian Hou, Naiming Qi and Hong Zhang

To present a stereo matching algorithm which satisfies the need of visual navigation on outdoor natural terrain for lunar rover or other mobile robots.

Abstract

Purpose

To present a stereo matching algorithm which satisfies the need of visual navigation on outdoor natural terrain for lunar rover or other mobile robots.

Design/methodology/approach

A feature‐assisted matching algorithm is presented to generate dense and accurate disparity map of natural terrain. Multi‐feature matching strategy produces reliable matching results for edge points. Disparity monotony constraint is derived and other geometrical constraints are introduced. With these constraints the edge‐matching results are used to limit the search region in area‐matching. As a result the algorithm produces dense disparity maps with fairly high accuracy and demonstrates advantages over straightforward area‐matching algorithm in improving matching accuracy.

Findings

With the help of several constraints, the feature‐assisted matching algorithm performs well in the matching of stereo image pairs of natural terrain.

Research limitations/implications

The algorithm focus on improving the accuracy of stereo image pairs matching of natural terrain and computation complexity is not an important designing factor. Only with the assistance of special hardware or other technique can the algorithm be used for real‐time navigation.

Practical implications

The algorithm is able to produce dense disparity map of natural terrain with rather high accuracy and can be used for the navigation of lunar rover or other outdoor mobile robots.

Originality/value

The paper provides a new approach to produce accurate and dense disparity map of natural terrain.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 April 2018

Shi-Qi Huang, Wen-Sheng Wu, Li-Ping Wang and Xiang-Yang Duan

This paper aims to study the removal of wide-stripe noise in hyperspectral remote sensing images. There is a great deal of stripe noises in short-wave infrared hyperspectral…

Abstract

Purpose

This paper aims to study the removal of wide-stripe noise in hyperspectral remote sensing images. There is a great deal of stripe noises in short-wave infrared hyperspectral remote sensing image, especially wide-stripe noise, which brings great challenge to the interpretation and application of hyperspectral images.

Design/methodology/approach

To remove the noise and to reduce the impact based on in-depth study of the mechanism of the stripe noise generation and its distribution characteristics, this paper proposed two statistical local processing and moment matching algorithms for the elimination of wide-stripe noise, namely, the gradient mean moment matching (GMMM) algorithm and the gradient interpolation moment matching (GIMM) algorithm.

Findings

The experiments were carried out with the practical short-wave infrared hyperspectral image data and good experiment results were obtained. Experiments show that both can reduce the impact of wide-stripe noise, and the filtering effect and the application range of the GIMM algorithm is better than that of the GMMM algorithm.

Originality/value

Using new methods to deal with the hyperspectral remote sensing images, it can effectively improve the quality of hyperspectral images and improve their utilization efficiency and value.

Details

Sensor Review, vol. 39 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 July 2022

Guangrun Sheng, Xixiang Liu, Zixuan Wang, Wenhao Pu, Xiaoqiang Wu and Xiaoshuang Ma

This paper aims to present a novel transfer alignment method based on combined double-time observations with velocity and attitude for ships’ poor maneuverability to address the…

Abstract

Purpose

This paper aims to present a novel transfer alignment method based on combined double-time observations with velocity and attitude for ships’ poor maneuverability to address the system errors introduced by flexural deformation and installing which are difficult to calibrate.

Design/methodology/approach

Based on velocity and attitude matching, redesigning and deducing Kalman filter model by combining double-time observation. By introducing the sampling of the previous update cycle of the strapdown inertial navigation system (SINS), current observation subtracts previous observation are used as measurements for transfer alignment filter, system error in measurement introduced by deformation and installing can be effectively removed.

Findings

The results of simulations and turntable tests show that when there is a system error, the proposed method can improve alignment accuracy, shorten the alignment process and not require any active maneuvers or additional sensor equipment.

Originality/value

Calibrating those deformations and installing errors during transfer alignment need special maneuvers along different axes, which is difficult to fulfill for ships’ poor maneuverability. Without additional sensor equipment and active maneuvers, the system errors in attitude measurement can be eliminated by the proposed algorithms, meanwhile improving the accuracy of the shipboard SINS transfer alignment.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 October 2018

Shaoyan Xu, Tao Wang, Congyan Lang, Songhe Feng and Yi Jin

Typical feature-matching algorithms use only unary constraints on appearances to build correspondences where little structure information is used. Ignoring structure information…

Abstract

Purpose

Typical feature-matching algorithms use only unary constraints on appearances to build correspondences where little structure information is used. Ignoring structure information makes them sensitive to various environmental perturbations. The purpose of this paper is to propose a novel graph-based method that aims to improve matching accuracy by fully exploiting the structure information.

Design/methodology/approach

Instead of viewing a frame as a simple collection of keypoints, the proposed approach organizes a frame as a graph by treating each keypoint as a vertex, where structure information is integrated in edges between vertices. Subsequently, the matching process of finding keypoint correspondence is formulated in a graph matching manner.

Findings

The authors compare it with several state-of-the-art visual simultaneous localization and mapping algorithms on three datasets. Experimental results reveal that the ORB-G algorithm provides more accurate and robust trajectories in general.

Originality/value

Instead of viewing a frame as a simple collection of keypoints, the proposed approach organizes a frame as a graph by treating each keypoint as a vertex, where structure information is integrated in edges between vertices. Subsequently, the matching process of finding keypoint correspondence is formulated in a graph matching manner.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 April 2018

Ambuj Sharma, Sandeep Kumar and Amit Tyagi

The presence of random noise as well as narrow band coherent noise makes the structural health monitoring a really challenging issue and to achieve efficient structural health…

Abstract

Purpose

The presence of random noise as well as narrow band coherent noise makes the structural health monitoring a really challenging issue and to achieve efficient structural health assessment methodology, very good extraction of noise and analysis of the signals are essential. The purpose of this paper is to provide optimal noise filtering technique for Lamb waves in the diagnosis of structural singularities.

Design/methodology/approach

Filtration of time-frequency information of multimode Lamb waves through the noisy signal is investigated in the present analysis using matched filtering technique and wavelet denoising methods. Using Shannon’s entropy criterion, the optimal wavelet function is selected and verification is made via the analysis of root mean square error of filtered signal.

Findings

The authors propose wavelet matched filter method, a combination of the wavelet transform and matched filtering method, which can significantly improve the accuracy of the filtered signal and identify relatively small damage, especially in enormously noisy data. Correlation coefficient and root mean square error are additionally computed for performance evaluation of the filters.

Originality/value

The present study provides detailed information about various noise filtering methods and a first attempt to apply the combination of the different techniques in signal processing for the structural health monitoring application. A comparative study is performed using the statistical tool to know whether filtered signals obtained through three different methods are acceptable and practicable for guided wave application or not.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 April 2018

Ambuj Sharma, Sandeep Kumar and Amit Tyagi

The real challenges in online crack detection testing based on guided waves are random noise as well as narrow-band coherent noise; and to achieve efficient structural health…

Abstract

Purpose

The real challenges in online crack detection testing based on guided waves are random noise as well as narrow-band coherent noise; and to achieve efficient structural health assessment methodology, magnificent extraction of noise and analysis of the signals are essential. The purpose of this paper is to provide optimal noise filtering technique for Lamb waves in the diagnosis of structural singularities.

Design/methodology/approach

Filtration of time-frequency information of guided elastic waves through the noisy signal is investigated in the present analysis using matched filtering technique which “sniffs” the signal buried in noise and most favorable mother wavelet based denoising methods. The optimal wavelet function is selected using Shannon’s entropy criterion and verified by the analysis of root mean square error of the filtered signal.

Findings

Wavelet matched filter method, a newly developed filtering technique in this work and which is a combination of the wavelet transform and matched filtering method, significantly improves the accuracy of the filtered signal and identifies relatively small damage, especially in enormously noisy data. A comparative study is also performed using the statistical tool to know acceptability and practicability of filtered signals for guided wave application.

Practical implications

The proposed filtering techniques can be utilized in online monitoring of civil and mechanical structures. The algorithm of the method is easy to implement and found to be successful in accurately detecting damage.

Originality/value

Although many techniques have been developed over the past several years to suppress random noise in Lamb wave signal but filtration of interferences of wave modes and boundary reflection is not in a much matured stage and thus needs further investigation. The present study contains detailed information about various noise filtering methods, newly developed filtration technique and their efficacy in handling the above mentioned issues.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 March 2019

Kirit J. Modi and Sanjay Garg

Cloud computing provides a dynamic, heterogeneous and elastic environment by offering accessible ‘cloud services’ to end-users. The tasks involved in making cloud services…

Abstract

Purpose

Cloud computing provides a dynamic, heterogeneous and elastic environment by offering accessible ‘cloud services’ to end-users. The tasks involved in making cloud services available, such as matchmaking, selection and composition, are essential and closely related to each other. Integration of these tasks is critical for optimal composition and performance of the cloud service platform. More efficient solutions could be developed by considering cloud service tasks collectively, but the research and academic community have so far only considered these tasks individually. The purpose of this paper is to propose an integrated QoS-based approach for cloud service matchmaking, selection and composition using the Semantic Web.

Design/methodology/approach

In this paper, the authors propose a new approach using the Semantic Web and quality of service (QoS) model to perform cloud service matchmaking, selection and composition, to fulfil the requirements of an end user. In the Semantic Web, the authors develop cloud ontologies to provide semantic descriptions to the service provider and requester, so as to automate the cloud service tasks. This paper considers QoS parameters, such as availability, throughput, response time and cost, for quality assurance and enhanced user satisfaction.

Findings

This paper focus on the development of an integrated framework and approach for cloud service life cycle phases, such as discovery, selection and composition using QoS, to enhance user satisfaction and the Semantic Web, to achieve automation. To evaluate performance and usefulness, this paper uses a scenario based on a Healthcare Decision-Making System (HDMS). Results derived through the experiment prove that the proposed prototype performs well for the defined set of cloud-services tasks.

Originality/value

As a novel concept, our proposed integrated framework and approach for cloud service matchmaking, selection and composition based on the Semantic Web and QoS characterisitcs (availability, response time, throughput and cost), as part of the service level agreement (SLA) will help the end user to match, select and filter cloud services and integrate cloud-service providers into a multi-cloud environment.

Details

Journal of Systems and Information Technology, vol. 21 no. 1
Type: Research Article
ISSN: 1328-7265

Keywords

Article
Publication date: 18 January 2013

Jiang Qi

The purpose of this paper is to compare the sensing characteristics of uniform fiber Bragg grating (FBG) and tilted fiber Bragg grating (TFBG) by presenting a detailed research…

Abstract

Purpose

The purpose of this paper is to compare the sensing characteristics of uniform fiber Bragg grating (FBG) and tilted fiber Bragg grating (TFBG) by presenting a detailed research review. Temperature, axial strain, bending, vibration and refractive index measurands of FBG and TFBG sensor are presented and some significant differences are found.

Design/methodology/approach

Theoretical analysis and practical application in engineering are investigated and compared from other authors' research papers and self analysis. Spectra behavior of both FBG and TFBG are discussed.

Findings

There are found to be significant differences in temperature, axial strain, bending, vibration and refractive index sensing characteristics of FBG and TFBG.

Originality/value

The paper's analysis is comprehensive and clear and provides readers with the sensing characteristics of FBG and TFBG in detail.

Article
Publication date: 1 February 1990

Andrzej DYKA

This paper presents a closed form analytic solution for the impulse response of an optimum FIR deconvolution filter intended for a pair of discrete pulses of arbitrary amplitude…

Abstract

This paper presents a closed form analytic solution for the impulse response of an optimum FIR deconvolution filter intended for a pair of discrete pulses of arbitrary amplitude and sign, subject to the minimisation of Chebyshev maximum norm for the approximation error. The tradeoff between the approximation error and the degradation of signal‐to‐noise ratio, is examined.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 9 no. 2
Type: Research Article
ISSN: 0332-1649

1 – 10 of over 11000