Search results

1 – 10 of 47
Article
Publication date: 8 January 2018

Zhenpeng He, Wenqin Gong, Weisong Xie, Guichang Zhang and Zhenyu Hong

Piston ring dynamic problem plays an important role in the lubricant characteristics of a reciprocating engine, which lead to engine wear and the increased consumption of…

Abstract

Purpose

Piston ring dynamic problem plays an important role in the lubricant characteristics of a reciprocating engine, which lead to engine wear and the increased consumption of lubricating oil. A cavitation analysis of the piston ring lubrication with two-dimensional Reynolds equation has rarely been reported owing to the complex working condition. The purpose of this study is to establish a precise model that can provide guidance for the design of the piston ring.

Design/methodology/approach

In this paper, a cavitation model and its effect on the piston ring lubrication was studied in a simulation program based on the mass-conserving theory which is solved by means of the Newton–Raphson method. In this study, some models such as mixed lubrication, asperity contact, blow-by/blow-back flow and cavitation have been coupled with the lubrication model.

Findings

The established model has been compared with the traditional model that deals with cavitation by using the Reynolds boundary condition algorithm. The cavitation zone, pressure distribution and density distribution between the piston ring and the cylinder have also been predicted. Studies of the changing trend for the pressure distribution and the cavitation zone at few typical crank angles have been listed to illustrate the cavitation changing rule. The analysis of the results indicates that the developed simulation model can adequately illustrate the lubrication problem of the piston ring system. All the analyses will provide guidance for the oil film rupture and the reformation process.

Originality/value

A two-dimensional cavitation model based on the mass-conserving theory has been built. The cavitation-forming and -developing process for the piston ring–liner lubrication has been studied. Non-cavitation occurs in the vicinity of top dead center and bottom dead center. The non-cavitation period will be longer in the vicinity of 360° of crank angle. The density distribution in the cavitation zone can be obtained.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 August 2022

Gabriel W. Rodrigues, Fabiano L. Oliveira, llmar F. Santos and Marco L. Bittencourt

This paper aims to compare different dynamical models, cavitation procedures and numerical methods to simulate hydrodynamic lubricated bearings of internal combustion engines.

90

Abstract

Purpose

This paper aims to compare different dynamical models, cavitation procedures and numerical methods to simulate hydrodynamic lubricated bearings of internal combustion engines.

Design/methodology/approach

Two dynamical models are considered for the main bearing of combustion engines. The first is a fluid-structure interaction multi-body dynamics coupled with lubricated bearings, where the equilibrium and Reynolds equations are solved together. The second model finds the equilibrium position of the bearing subjected to previously calculated dynamical loads. The Traditional p-? procedure and Giacopini’s model described in Giacopini et al. (2010) are adopted for cavitation purposes. The influence of the finite difference and finite element numerical methods is investigated.

Findings

Simulations were carried out considering small-, mid- and large-sized engines and the dynamical models differed mainly in predicting the journal orbits. Finite element method with Giacopini’s cavitation model had improved numeric stability for the three engines.

Research limitations/implications

The dynamic models do not consider the flexibility of the components of the main mechanism of combustion engines which may overestimate the oil pressure and journal orbits.

Practical implications

It can help researchers and engineers to decide which combination of methods is best suited for their needs and the implications associated with each one.

Social implications

The used methods may help engineers to design better and more efficient combustion engines.

Originality/value

This paper helps practitioners to understand the effects of different methods on the results. Additionally, depending on the engine, one approach can be more effective than the other.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 April 2020

Gabriel Welfany Rodrigues and Marco Lucio Bittencourt

This paper aims to numerically investigate the surface texturing effects on the main bearings of a three-cylinder ethanol engine in terms of the power loss and friction…

Abstract

Purpose

This paper aims to numerically investigate the surface texturing effects on the main bearings of a three-cylinder ethanol engine in terms of the power loss and friction coefficient for dynamic load conditions.

Design/methodology/approach

The mathematical formulation considers the Partir-Cheng modified Reynolds equation. The mass-conserving Elrod-Adams pmodel with the JFO approach is used to deal with cavitation. A fluid-structure coupling procedure is considered for the elastohydrodynamic lubrication. Accordingly, a 3-D linear-elastic substructured finite element model obtained from Abaqus is applied

Findings

Simulations were carried out considering different dimple texture designs in terms of location, depth and radius. The results suggested that there are regions where texturing is more effective. In addition, distinct journal rotation speeds are studied and the surface texture was able to reduce friction and the power loss by 7%.

Practical implications

The surface texturing can be a useful technique to reduce the power loss on the crankshaft bearing increasing the overall engine efficiency.

Originality/value

The surface texturing performance in a three-cylinder engine using ethanol as fuel was investigated through numerical experimentation. The results are supported by previous findings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2019-0380/

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 June 2018

Yang Mao and Liangcai Zeng

The purpose of this study is to establish a friction coefficient prediction model using texture parameters and then using the optimal texture parameters to obtain the minimum…

Abstract

Purpose

The purpose of this study is to establish a friction coefficient prediction model using texture parameters and then using the optimal texture parameters to obtain the minimum friction coefficient.

Design/methodology/approach

Based on texture technology and the cavitation phenomenon conditions, a test scheme based on two-factor and five-level texture parameters is designed using central composite design and then the response surface methodology and hybrid back-propagation genetic algorithm (BP-GA) models are used to establish a friction coefficient prediction model and optimize the friction coefficient.

Findings

The result indicates that the values predicted using two methodologies agree well with the experimental data, but the hybrid BP-GA model is superior to the response surface methodology model in both prediction and optimization.

Originality/value

Two methodologies are used to study the influence of the texture parameters on the friction coefficient under the cavitation condition. It is expected that the result can be used to obtain optimum texture parameters to reduce the friction coefficient.

Details

Industrial Lubrication and Tribology, vol. 70 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 November 2021

Junru Wang, Quandai Wang, Yueyan Li, Meiling Guo, Pengyang Li and Yan Li

The purpose of this paper is to investigate the effects of surface texture with roughness orientation considered on tribological properties under a mixed lubrication state…

Abstract

Purpose

The purpose of this paper is to investigate the effects of surface texture with roughness orientation considered on tribological properties under a mixed lubrication state numerically and experimentally.

Design/methodology/approach

Based on the average Reynolds equation and asperity contact model, the impacts of surface texture parameters and roughness orientation on lubrication properties have been calculated using finite difference method. Tin–bronze samples with various prescribed surface texture geometric parameters and roughness orientation were fabricated by laser surface texturing technique, and the tribology performance of the textured surface was studied experimentally.

Findings

The effects of surface geometric parameters and roughness orientation parameters have been discerned. The experimental observations are in good agreement with the numerical prediction, which suggests that the numerical scheme adopted in this work is suitable in capturing the surface texture and roughness effect under mixed lubrication state.

Originality/value

By meticulously controlling the surface roughness and surface texture geometric characteristics based on the laser surface texturing process, samples with prescribed surface texture parameters and roughness orientation consistent with that in theoretical studies were fabricated and the theoretical model and results were verified experimentally.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 October 2018

Mu-ming Hao, Wen-jing Yang, Heng-chao Cao, Lu-shuai Xu, Yun-lei Wang and Yong-fan Li

The purpose of this paper is to investigate the dynamic characteristics of a spiral groove liquid film seal considering the effect of cavitation.

Abstract

Purpose

The purpose of this paper is to investigate the dynamic characteristics of a spiral groove liquid film seal considering the effect of cavitation.

Design/methodology/approach

A mathematical model of a spiral groove liquid film seal was established based on the mass-conserving Jakobsson–Floberg–Olsson cavitation boundary condition. The film rupture and film reformation boundaries were assumed to be unchanged under infinitesimal perturbation conditions. Governing equations under steady and perturbed states were solved by the finite element method, and then the dynamic characteristics of the spiral groove liquid film seal were theoretically investigated considering the effect of cavitation.

Findings

The results indicate that dynamic coefficients considering cavitation are smaller than those neglecting cavitation. The difference value is consistent with the change in cavitation area. The liquid film seal does not suffer axial instability whether considering cavitation, but its angular instability is more likely to occur when cavitation is considered.

Originality/value

For liquid lubricated non-contacting mechanical seals, the dynamic characteristics considering cavitation are investigated. The results are expected to provide a theoretical basis for improving the design method of liquid film seals.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 June 2021

Hongyu Duan, Qingtao Yu and Zhijian Wang

The purpose of this paper is to study the film-forming capacity of logarithmic crowned roller for tapered roller bearing (TRB) and to design a tapered roller profile based on an…

Abstract

Purpose

The purpose of this paper is to study the film-forming capacity of logarithmic crowned roller for tapered roller bearing (TRB) and to design a tapered roller profile based on an elastohydrodynamic lubrication model.

Design/methodology/approach

A coupled model, incorporating a quasi-static model of TRBs and an elastohydrodynamic lubrication model was developed to investigate the load distribution of TRB and to evaluate the lubrication state of tapered roller/raceway contact.

Findings

The model is verified with published literature results. Parametric analysis is conducted to investigate the effect of crown drop on azimuthal load distribution of the roller, film thickness and pressure distribution in the contact area. The result shows that crown drop has little influence on the azimuthal load distribution; also, the film thickness and the pressure distribution are asymmetric. When the tapered roller is designed and manufactured, the crown drop of the small end should be larger than that in the large end.

Originality/value

Precise roller profile design is conducive to improve the fatigue life of TRBs. Currently, most crown design methods neglect the influence of lubrication, which can lead to a non-suitable roller profile. Therefore, the present work is undertaken to optimize roller profiles based on lubrication theory.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 March 2015

Lidui Wei, Haijun Wei, Shulin Duan and Yu Zhang

The purpose of this paper is to develop a good calculation model to accurately predict the lubrication characteristic of main bearings of diesel engine and improve the service…

Abstract

Purpose

The purpose of this paper is to develop a good calculation model to accurately predict the lubrication characteristic of main bearings of diesel engine and improve the service life.

Design/methodology/approach

Based on the coupling of the whole flexible engine block and the flexible crankshaft reduced by the Component Mode Synthesis (CMS) method, considering mass-conserving boundary conditions, the average flow model equation and Greenwood/Tripp asperity contact theory, an elastohydrodynamic (EHD)-mixed lubrication model of the main bearings for the diesel engine is developed and researched with the finite volume method and the finite element method.

Findings

Obviously, the mixed lubrication of bearings is normal, while full hydrodynamic lubrication is transient. The results show that under the whole flexible block model, maximum oil film pressure, maximum asperity contact pressure and radial shell deformation decrease, while minimum oil film thickness increases. Oil flow over edge decreases, and so does friction loss. Therefore, coordination deformation ability of whole engine block is favorable to mean load. In the whole block model, friction contact happens on both upper shell and lower shell positions. In addition, average oil film fill ratio at the key position becomes smaller in the whole engine block model, and consequently increases the chances of cavitations erosion more. So, wearing resistance of both upper and lower shells and anti-cavitations erosion ability must be enhanced simultaneously.

Originality/value

Based on the coupling of the whole flexible engine block and the flexible crankshaft reduced by the CMS method, considering mass-conserving boundary conditions, the average flow model equation and Greenwood/Tripp asperity contact theory, an EHD-mixed lubrication model of the main bearings for the diesel engine is built, which can predict the lubrication of journal bearings more accurately.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 August 2021

Mohammad Arif, Saurabh Kango and Dinesh Kumar Shukla

This study aims to purpose the suitable location of slip boundary condition and microscale surface textures to enhance the tribological performance of the hydrodynamic journal…

Abstract

Purpose

This study aims to purpose the suitable location of slip boundary condition and microscale surface textures to enhance the tribological performance of the hydrodynamic journal bearings.

Design/methodology/approach

Mass conserving Elrod cavitation algorithm with considering slip boundary condition has been used for predicting the static performance characteristics (load carrying capacity, coefficient of friction and volumetric inflow rate) of finite cylindrical shape textured journal bearings.

Findings

It has been observed that the full textured bearing with slip boundary condition in between 0°–180° circumferential region gives a significant reduction in the lubricant rupture zone. However, the introduction of textures up to the interface of slip and the no-slip region is increasing the load-carrying capacity and reduces the shear stress. This reduction in shear stress with combined slip and surface textures is effective in increasing the volumetric inflow rate of the lubricant.

Practical implications

The combined effect of slip boundary condition and surface texturing is increasing the scope of liquid lubricants in hydrodynamic journal bearings and further contributing toward the development of small-scale rotating machines.

Originality/value

The study related to the use of mass conserving Elrod cavitation algorithm for finding the optimum location of slip and surface texture zones has been found rare in the literature. Previous studies show that the mass conserving Elrod cavitation algorithm gives realistic results for textured bearings and its findings show good agreement with the experimental observations.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 April 2022

Said Sobhi, Mohamed Nabhani, Khalid Zarbane and Mohamed El Khlifi

This study aims to present a numerical model to investigate cavitation effects on oscillatory porous squeeze film. This effect is able to cause considerable damage to the…

Abstract

Purpose

This study aims to present a numerical model to investigate cavitation effects on oscillatory porous squeeze film. This effect is able to cause considerable damage to the lubrication mechanisms, mainly in the form of surface erosion. The erosion process is caused by surface spalling due to alternating positive and negative contact stresses imposed by bubble collapse. If the process continues uncontrolled, the performance of the contact will rapidly deteriorate.

Design/methodology/approach

The study is conducted numerically using Elrod–Adams model for the modified Reynolds equation coupled with the Darcy’s law for the lubricant flow through the porous medium. The governing equations are numerically discretized and iteratively solved.

Findings

The numerical results show that frequency, amplitude and permeability have a significant influence on the generation of cavitation. A comparison of the present numerical results against available literature experimental data in particular case proved a good agreement.

Originality/value

The present paper is to develop a more realistic and efficient model. Indeed, the consideration of cavitation phenomena in this model will lead to a more accurate prediction of the squeeze film characteristics. The results of this paper are based on original work and have practical value.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 47