Search results

1 – 10 of over 10000
Article
Publication date: 4 August 2023

Rodrigo Enzo de Prada, Guillermo Rubén Bossio and Mariano Martín Bruno

The purpose of this study is to investigate how the amount of material used and printing parameters affect the mechanical and water sorption properties of acrylonitrile butadiene…

Abstract

Purpose

The purpose of this study is to investigate how the amount of material used and printing parameters affect the mechanical and water sorption properties of acrylonitrile butadiene styrene printed parts.

Design/methodology/approach

The specimens were printed using different printing parameters such as shell number, infill pattern and printing orientation, while accounting for the amount of material used. The mechanical properties of the printed parts were then evaluated using tensile, compression and flexural tests, along with sorption tests.

Findings

The results revealed that the maximum tensile stress of 31.41 MPa was obtained when using 100% infill and a horizontal printing orientation. Similarly, the maximum flexural strength and compression of 40.5 MPa and 100.7 MPa, respectively, were obtained with 100% infill. The printing orientation was found to have a greater impact on mechanical behavior compared to the number of shells or infill patterns. Specifically, the horizontal printing orientation resulted in specimens with at least 25% greater strength compared to the vertical printing orientation. Furthermore, the relationship between the amount of material used and strength was evident in the tensile and flexural tests, which showed a close correlation between the two.

Originality/value

This study’s originality lies in its focus on optimizing the amount of material used to achieve the best strength-to-mass ratio and negligible water infiltration. The findings showed that specimens with two shells and a 60% infill density exhibited the best strength-to-mass ratio.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 October 2023

Cleiton Lazaro Fazolo De Assis and Cleber Augusto Rampazo

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged…

Abstract

Purpose

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged as a promising material for FFF due to their excellent mechanical properties. However, the optimal processing conditions and the effect of the blending ratio on the mechanical properties of the resulting workpieces are still unclear.

Design/methodology/approach

A statistical factorial matrix was designed, including infill pattern, printing speed, nozzle size, layer height and printing temperature as factors (with three levels). A total of 810 workpieces were printed using PC/ABS blends filament with the FFF. The workpieces’ finishing and mass were evaluated. Tensile tests were performed. Analysis of variance was performed to determine the main effects of the processing conditions on the mechanical properties.

Findings

The results showed that the PC/ABS (70/30) exhibited higher tensile. Tensile rupture corresponded to 30% of the tensile strength. The infill pattern showed the highest contribution to the responses. The concentric pattern showed higher tensile strength. Tensile strength and mass ratio demonstrated the influence of mass on tensile strength. The influence of printing parameters on deformation depended on the blend proportions. Higher printing speed and lower layer height provided better quality workpieces.

Originality/value

This study has implications for the design and manufacturing of three-dimensional printed parts using PC/ABS filaments. An extensive experimental matrix was applied, aiming at a complete understanding of mechanical behavior, considering the main printing parameters and combinations not explored by literature.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 February 2021

João Araújo Afonso, Jorge Lino Alves, Gabriela Caldas, Barbara Perry Gouveia, Leonardo Santana and Jorge Belinha

This paper aims to evaluate the influence of the parameters of the Fused Filament Fabrication (FFF) process on the mechanical properties and on the mass of parts printed in…

Abstract

Purpose

This paper aims to evaluate the influence of the parameters of the Fused Filament Fabrication (FFF) process on the mechanical properties and on the mass of parts printed in Polylactic Acid (PLA). In addition, the authors developed predictive models for the analysed responses.

Design/methodology/approach

A full Factorial type of experimental planning method was used to define the conditions for manufacturing parts according to the variation of the construction parameters, extrusion temperature and print speed. Samples were printed for tensile, flexion and compression tests. Their mass was measured. Multiple regression methods, based on power equations, were used to build the forecasting models.

Findings

It was found that the extrusion temperature was the parameter of greatest influence in the variation of the analysed responses, mainly because it generates behaviour patterns and indirectly demonstrates thermal/rheological characteristics of the material used. Print speed affects responses, however, with variations dependent on part geometry and printer hardware/software. It was possible to establish prediction models with low error rates in relation to the experimental values.

Originality/value

The study demonstrates a good relation between the use of a structured experimental planning method as the basis for the development of predictive models based on mathematical equations, the same structure of which can be used to describe different responses.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 March 2017

Anne-Charlotte Goupil, Jean-Charles Craveur, Benjamin Mercier and Philippe Barabinot

This paper aims to deal with numerical modelling of composite panels of naval industry exposed to fire. Finite element (FE) analyses have been used to study the thermomechanical…

Abstract

Purpose

This paper aims to deal with numerical modelling of composite panels of naval industry exposed to fire. Finite element (FE) analyses have been used to study the thermomechanical behaviour of structures. This paper focuses more particularly on assumptions used to model and evaluate design performance of sandwich panels made of E-Glass vinyl ester and balsawood cored submitted to a certification fire test.

Design/methodology/approach

The methodology consisted of having an advanced understanding of phenomena occurring in both thermal and mechanical behaviours when large structures are degraded under thermal solicitation. Then, properties measuring methods were explored and studied in relation with the size of the structure they are used to describe. Finally, several modelling strategies were compared and applied to large-size panels under ISO 834 fire conditions.

Findings

Research studies and comparisons showed that for these types of material and these types of structure, non-linear thermomechanical behaviour can be performed with a so-called “reduced” thermal model, provided that properties are measured in an appropriate way. “Reduced” model was compared with “full” model, and results were close to experimental measures. A mechanical properties’ review allowed selecting only necessary material FE analysis of large panels under ISO 834 fire.

Originality/value

The research was conducted on real-size structures taking into account the real conditions in which structures are tested when passing certification. Work was carried out on reducing numerical model size without neglecting phenomenon or losing accuracy.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 18 February 2021

Ana C. Lopes, Álvaro M. Sampaio, Cátia S. Silva and António J. Pontes

Owing to the operating principle of powder bed fusion processes, selective laser sintering (SLS) requires effective management of the mixture ratio of processed material…

Abstract

Purpose

Owing to the operating principle of powder bed fusion processes, selective laser sintering (SLS) requires effective management of the mixture ratio of processed material previously exposed to the high temperatures of processing with new virgin material. Therefore, this paper aims to fully understand the effect that the successive reprocessing has in the powder material and to evaluate its influence on the properties of SLS parts produced at different building orientations.

Design/methodology/approach

Polyamide 12 material with 0%, 30% and 50% of virgin powder and parts produced from them were studied through five consecutive building cycles and their mass, mechanical, thermal and microstructural properties were evaluated. Then, the experimental data was used to validate a theoretical algorithm of prediction capable to define the minimum amount of virgin powder to be added on the processed material to produce parts without significant loss of properties.

Findings

Material degradation during SLS influences the mass and mechanical properties of the parts, exhibiting an exponential decay property loss until 50% of the initial values. The theoretical algorithms of reprocessing proved the appropriateness to use a mixture of 30% of virgin with 70% of processed material for the most common purposes.

Practical implications

This paper validates a methodology to define the minimum amount of virgin material capable to fulfil the operational specifications of SLS parts as a function of the number of building cycles, depending on the requirements of the final application.

Originality/value

The use of theoretical models of prediction allows to describe the degradation effects of SLS materials during the sintering, ensuring the sustainable management of the processed powder and the economic viability of the process.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1096

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 December 2023

Bheem Pratap and Pramod Kumar

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Abstract

Purpose

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Design/methodology/approach

The investigation involved studying the influence of partially replacing fly ash with ground granulated blast furnace slag (GGBS) at different proportions (5%, 10%, 15%, 20% and 25%) on the composition of the geopolymer. This approach aimed to examine how the addition of GGBS impacts the properties of the geopolymer material. The chemical NaOH was purchased from the local supplier of Jamshedpur. The alkali solution was prepared with a concentration of 12 M NaOH to produce the concrete. After several trials, the alkaline-to-binder ratio was determined to be 0.43.

Findings

The compressive strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 35.42 MPa, 41.26 MPa, 44.79 MPa, 50.51 MPa and 46.33 MPa, respectively. The flexural strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 5.31 MPa, 5.64 MPa, 6.12 MPa, 7.15 MPa and 6.48 MPa, respectively. The split tensile strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 2.82 MPa, 2.95 MPa, 3.14 MPa, 3.52 MPa and 3.31 MPa, respectively.

Originality/value

This approach allows for the examination of how the addition of GGBS affects the properties of the geopolymer material. Four different temperature levels were chosen for analysis: 100 °C, 300 °C, 500 °C and 700 °C. By subjecting the geopolymer samples to these elevated temperatures, the study aimed to observe any changes in their mechanical.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 January 2020

Tianbiao Yu, Yu Zhao, Xiaoxi Bi, Boxue Song and Ying Chen

The purpose of this paper is to study the influence of the porous structure on the maximum stress and modulus of elasticity of the specimens which are fabricated by rapid…

Abstract

Purpose

The purpose of this paper is to study the influence of the porous structure on the maximum stress and modulus of elasticity of the specimens which are fabricated by rapid prototypes. According to the experimental results, modify the theoretical formula of elastic modulus.

Design/methodology/approach

The Objet Eden 250 was used to prepare the Vero White photosensitive resin samples with different porosity (ranges from 25 to 65 per cent) and different pore structures. The mechanical properties of different samples were numerically simulated and the formulas of the modulus of elasticity were established. Through the compression test, the performance of the specimen is compared and analyzed, and the theoretical elastic modulus formula is optimized.

Findings

With the increase of porosity, the maximum stress of honeycomb structure specimens decreases. The maximum stress of the honeycomb structure specimen with circular pore shape is higher than the hexagon cross-section while the hexahedron and octahedron structure are the arms (wall thickness between pores) with a square cross-section. The error comparison between the modulus of elasticity before and after the structure models regression analysis shows that after the regression analysis, the error of theoretical value and the actual value is between 0 and 14 per cent which is lower than the value before the regression analysis which was between 5 and 27 per cent.

Originality/value

The paper obtains rules of the influence of different porous structures which were fabricated by the Vero White photosensitive resin material on mechanical properties and higher prediction accuracy formula of elastic modulus. The conclusions provide a theoretical basis for Northeastern University, China, to reduce mass and mechanical properties prediction of load-bearing parts.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 August 2016

Mica Grujicic, Jennifer Snipes, S Ramaswami, Vasudeva Avuthu, Chian-Fong Yen and Bryan Cheeseman

Traditionally, an armor-grade composite is based on a two-dimensional (2D) architecture of its fiber reinforcements. However, various experimental investigations have shown that…

Abstract

Purpose

Traditionally, an armor-grade composite is based on a two-dimensional (2D) architecture of its fiber reinforcements. However, various experimental investigations have shown that armor-grade composites based on 2D-reinforcement architectures tend to display inferior through-the-thickness mechanical properties, compromising their ballistic performance. To overcome this problem, armor-grade composites based on three-dimensional (3D) fiber-reinforcement architectures have recently been investigated experimentally. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, continuum-level material models are derived, parameterized and validated for armor-grade composite materials, having four (two 2D and two 3D) prototypical reinforcement architectures based on oriented ultra-high molecular-weight polyethylene fibers. To properly and accurately account for the effect of the reinforcement architecture, the appropriate unit cells (within which the constituent materials and their morphologies are represented explicitly) are constructed and subjected to a series of virtual mechanical tests (VMTs). The results obtained are used within a post-processing analysis to derive and parameterize the corresponding homogenized-material models. One of these models (specifically, the one for 0°/90° cross-collimated fiber architecture) was directly validated by comparing its predictions with the experimental counterparts. The other models are validated by examining their physical soundness and details of their predictions. Lastly, the models are integrated as user-material subroutines, and linked with a commercial finite-element package, in order to carry out a transient non-linear dynamics analysis of ballistic transverse impact of armor-grade composite-material panels with different reinforcement architectures.

Findings

The results obtained clearly revealed the role the reinforcement architecture plays in the overall ballistic limit of the armor panel, as well as in its structural and damage/failure response.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to assess, computationally, the utility and effectiveness of 3D fiber-reinforcement architectures for ballistic-impact applications.

Details

International Journal of Structural Integrity, vol. 7 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 December 2022

Taha Sheikh and Kamran Behdinan

This paper aims to present a hierarchical multiscale model to evaluate the effect of fused deposition modeling (FDM) process parameters on mechanical properties. Asymptotic…

91

Abstract

Purpose

This paper aims to present a hierarchical multiscale model to evaluate the effect of fused deposition modeling (FDM) process parameters on mechanical properties. Asymptotic homogenization mathematical theory is developed into two scales (micro and macro scales) to compute the effective elastic and shear modulus of the printed parts. Four parameters, namely, raster orientation, layer height, build orientation and porosity are studied.

Design/methodology/approach

The representative volume elements (RVEs) are generated by mimicking the microstructure of the printed parts. The RVEs subjected to periodic boundary conditions were solved using finite element. The experimental characterization according to ASTM D638 was conducted to validate the computational modeling results.

Findings

The computational model reports reduction (E1, ∼>38%) and (G12, ∼>50%) when porosity increased. The elastic modulus increases (1.31%–47.68%) increasing the orthotropic behavior in parts. Quasi-solids parts (100% infill) possess 10.71% voids. A reduction of 11.5% and 16.5% in elastic modulus with layer height is reported. In total, 45–450 oriented parts were highly orthotropic, and 0–00 parts were strongest. The order of parameters affecting the mechanical properties is porosity > layer height > raster orientation > build orientation.

Originality/value

This study adds value to the state-of-the-art terms of construction of RVEs using slicing software, discarding the necessity of image processing and study of porosity in FDM parts, reporting that the infill density is not the only measure of porosity in these parts.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 10000