Search results

1 – 10 of over 1000
Article
Publication date: 6 April 2010

I. Lombillo, L. Villegas and J. Elices

The analysis of ancient buildings presents professionals with important challenges, so it is necessary to have a rational methodology of analysis of these constructions. From the…

1050

Abstract

Purpose

The analysis of ancient buildings presents professionals with important challenges, so it is necessary to have a rational methodology of analysis of these constructions. From the point of view of the technology of structures it is imperative to know the mechanical characteristics of the structural elements involved, as well as the existing stress levels. Currently the tendency is to obtain such knowledge in a non‐destructive way, producing minimal damage. The purpose of this paper is to provide a vision of some of the minor‐destructive techniques (MDT) applied to the diagnosis of historical rubble stone masonry structures.

Design/methodology/approach

The paper focuses attention on the employment of techniques based on mechanical stress aspects: flat jack, hole‐drilling and dilatometer, conducted on rubble stone masonry structures. Several computational models were made of parts of the building. These models were used to obtain experimental data (modulus of elasticity and Poisson's ratio). The accuracy of the models was contrasted through the comparison with compression stress levels obtained experimentally.

Findings

The paper provides a brief description of these MDT, and exposes the flat jack tests results obtained on several historical masonry walls in the Major Seminary of Comillas (Spain): Compression stress levels, modulus of elasticity and Poisson's ratio of several masonries of this building.

Practical implications

These techniques improve the computational models of constructions, because they can obtain a better knowledge of their mechanical properties, from experimental ways, and the calibration of models through experimental data.

Originality/value

This paper describes one of the first applications of these techniques in Spain.

Details

Structural Survey, vol. 28 no. 1
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 7 July 2017

Puneet Kumar and Gaurav Srivastava

Reinforced concrete structural frames with masonry infills (infill-frames) are commonly used for construction worldwide. While the behavior of such frames has been studied…

Abstract

Purpose

Reinforced concrete structural frames with masonry infills (infill-frames) are commonly used for construction worldwide. While the behavior of such frames has been studied extensively in the context of earthquake loading, studies related to their fire performance are limited. Therefore, this study aims to characterize the behavior of infill-frames under fire exposure by presenting a state-of-the-art literature review of the same.

Design/methodology/approach

Both experimental and computational studies have been included with a special emphasis on numerical modeling (simplified as well as advanced). The cold behavior of the infill-frame and its design requirements in case of fire exposure are first reviewed to set the context. Subsequently, the applicability of numerical modeling strategies developed for modeling cold infill-frames to simulate their behavior under fire is critically examined.

Findings

The major hurdles in developing generic numerical models for analyzing thermo-mechanical behavior of infill-frames are identified as: lack of temperature-dependent material properties, scarcity of experimental studies for validation and idealizations in coupling between thermal and structural analysis.

Originality value

This study presents one of the most popular research problems connected with practical and reliable utilization of numerical models, as a good alternative to expensive traditional furnace testing, in assessing fire resistance of infill-frames. It highlights major challenges in thermo-mechanical modeling of infill-frames and critically reviews the available approaches for modeling infill-frames subjected to fire.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 9 April 2018

Mazen J. Al-Kheetan, Mujib M. Rahman and Denis A. Chamberlain

The purpose of this paper is to investigate the performance of new and innovative crystallising materials, so-called moisture blockers, in protecting masonry structures from water…

Abstract

Purpose

The purpose of this paper is to investigate the performance of new and innovative crystallising materials, so-called moisture blockers, in protecting masonry structures from water ingress.

Design/methodology/approach

Two masonry wells were constructed: one with lime mortar and the other with cement-based mortar in order to hold water inside, and then a moisture blocking product was applied at dry and wet conditions to the negative hydrostatic pressure side. The moisture levels of both, the surfaces and the substrate, were then observed for 14 days.

Findings

Results demonstrated that moisture blocking materials are effective methods in reducing the levels of surface moisture for bricks, mortar-brick interface and mortar.

Originality/value

Moisture blockers use the available water in the masonry to block the passage of water to the surface of the masonry, filling pores, cracks and spaces at the interface between mortar and bricks. This approach will deliver a wider understanding of how water-based moisture blockers work and the scenarios in which they are best applied. The pursuit of possible environmentally friendly and sustainable materials for use in the construction industry is the key driver of this research.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 July 2005

Ali Mehrabian and Achintya Haldar

Some lessons learned from post‐earthquake damage survey of structures affected by the Bam earthquake of December 26, 2003 in Iran are encapsulated in this paper. The Bam…

3390

Abstract

Purpose

Some lessons learned from post‐earthquake damage survey of structures affected by the Bam earthquake of December 26, 2003 in Iran are encapsulated in this paper. The Bam earthquake caused catastrophic structural damage in the region.

Design/methodology/approach

A method similar to that of rapid evaluation procedure (REP), recommended by the Applied Technology Council (ATC‐20) in the USA, was used for damage survey.

Findings

Bam represents a typical ancient city in many countries around the world. Most of the structures in the region are made of adobe, unreinforced masonry, steel, and unreinforced/reinforced concrete. Some of the main types of structural damage, their causes, and potential remedial measures are characterized with an emphasis on the very basic fundamental principles of earthquake‐resistant design.

Practical implications

The research reported has considerable implications for other seismic‐affected regions of the world.

Originality/value

A first hand‐account of the catastrophic damage caused by this natural disaster and the implications for future design and construction in seismic‐affected areas.

Details

Structural Survey, vol. 23 no. 3
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 28 October 2019

Piyoosh Rautela, Girish Chandra Joshi and Shailesh Ghildiyal

The purpose of this study is to estimate the cost of seismic resilience of identified vulnerable lifeline public buildings in earthquake-prone Himalayan province of Uttarakhand in…

Abstract

Purpose

The purpose of this study is to estimate the cost of seismic resilience of identified vulnerable lifeline public buildings in earthquake-prone Himalayan province of Uttarakhand in India.

Design/methodology/approach

Built area of the identified vulnerable lifeline buildings together with prevalent rate of construction has been considered for assessing the cost of seismic resilience while improvised rapid visual screening (RVS) technique, better suited to the built environment in the region, has been used for assessing seismic vulnerability.

Findings

Investment of US$250.08m is assessed as being required for ensuring seismic safety of 56.3, 62.1, 52.9, 64.6, 71.9 and 61.7% surveyed buildings, respectively, of fire and emergency services, police, health, education, local administration and other departments that are to become non-functional after an earthquake and result in a major socio-political turmoil. A total amount of US$467.71m is estimated as being required for making all the buildings of these departments seismically resilient.

Research limitations/implications

Actual investment estimates and reconstruction/retrofitting plans have to be prepared after detailed investigations as RVS technique only provides a preliminary estimate and helps in prioritising buildings for detailed investigations.

Practical implications

This study is intended to provide a snapshot of the state of seismic vulnerability together with the financial resources required for corrective measures. This is to help the authorities in planning phased mobilisation of financial and technical resources for making the built environment seismically resilient.

Social implications

This study is to bring forth awareness on this important issue and consequent public opinion in favour of safety of public facilities to ensure allocation of appropriate financial resources together with changes in techno-legal regime for the cause of earthquake safety. At the same time, this study is to motivate masses to voluntarily assess safety of their neighbourhood and undertake corrective measures.

Originality/value

This study is based on primary data collected by the authors.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 10 no. 5
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 14 November 2016

Muhammad Masood Rafi, Sarosh Hashmat Lodi, Muhammad Ahmed, Amit Kumar and Firoz Verjee

This paper aims to present the studies which were carried out to determine building typology in Northern Pakistan, which is a seismically active region.

Abstract

Purpose

This paper aims to present the studies which were carried out to determine building typology in Northern Pakistan, which is a seismically active region.

Design/methodology/approach

A total of 41 towns and cities were surveyed to collect the data of building types. Help was also taken from global positioning system and satellite imagery.

Findings

In total, 14 different types of buildings were identified in the region based on the structural system and combination of wall and roof materials; each of them was assigned an appropriate designation. The walls in these buildings were made of block, stone or brick, whereas the roof consisted of corrugated galvanised iron sheet, thatched roof, precast concrete planks or reinforced concrete (RC). Only 6 per cent buildings were found to be engineered RC buildings; this indicates a significance proportion of non-engineered building stock in Northern Pakistan.

Research limitations/implications

The surveys were conducted in some of the selected areas. Other areas are beyond the scope of this work.

Practical implications

The presence of a huge deficient building stock in Pakistan indicates a major seismic risk. The seismic losses are largely dependent on the earthquake resistance of existing buildings and building stock. An inventory of existing buildings and their types can help in assessing seismic vulnerability of the built environment, which may lead to the development of policies for seismic risk reduction.

Originality/value

Presently, housing encyclopaedia does not exist in Pakistan. As a result, housing typology in the country is not known. The presented study addresses this gap in part. Housing typology surveys were conducted to study the typical construction practices in the selected areas and to determine the proportions of different building types in the overall building stock.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 7 no. 5
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 23 September 2022

Amir Amjad Mohammadi, Hadi Safaeipour, Mohammad Reza Chenaghlou, Alireza Behnejad and Roham Afghani Khoraskani

This paper aims at discovering the traditional techniques of Persian architecture for covering large-span spaces with a kind of ribbed vault titled “Karbandi”. This structure is…

Abstract

Purpose

This paper aims at discovering the traditional techniques of Persian architecture for covering large-span spaces with a kind of ribbed vault titled “Karbandi”. This structure is generated by intersecting several arches with a harmonic stellar geometry. Preliminary studies show that span factor affects the structural form of karbandi and large-span cases, despite similar architectural forms, have different structural systems and specific construction methods. The main focus of this paper is how karbandi has been designed and built on large-spans. To answer this question, the configuration and construction of a large-span karbandi in Tabriz Bazaar were recognized.

Design/methodology/approach

Data collection of the research was initially done in three parallel directions through the archival study of restoration documents, direct observation of the corpus of the vaultings and interviews with the master mason of the Haj-Mohammad-Qoli Timche restoration team. Then by cross-referencing the gathered data, the construction process of the karbandi was simulated in Rhino 6 and Grasshoppers software and its BIM-M models were created in three levels of development: LOD300, LOD350 and LOD400. In the next step, the preliminary BIM-M models of the karbandi were presented to the interviewed mason and revised and completed based on his comments.

Findings

Analyzing the BIM models by reverse engineering, resulted in (1) Discovering a unique self-supporting masonry construction method applied for the erection of karbandi vaulting on large-spans. (2) Finding the effect of scale factor on the architectural and structural form of the karbandi vault. (3) Discovering the connection types of the karbandi vault based on the construction details.

Originality/value

Despite the wide applications of karbandi vaults throughout history, very little information of their construction techniques is available. The techniques have mostly been experientially and orally passed down from masters to apprentices and rarely been documented. The quest to design and construct a karbandi vault is therefore like solving a puzzle whose most important guide is historical cases. Due to the geometric complexity of karbandi and its ability to cover large-span spaces, solving the puzzle can lead to achieving some technical ideas for masonry cross-ribbed vaulting. A great riddle of the karbandi vaults is how to design and build them on a large span.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 August 2023

Wee Fhong Ow, Shirley Jin Lin Chua and Azlan Shah Ali

This paper aims to explore the history of Anglican churches in Malaysia and discusses their typical features and their respective maintenance practices.

Abstract

Purpose

This paper aims to explore the history of Anglican churches in Malaysia and discusses their typical features and their respective maintenance practices.

Design/methodology/approach

A narrative review of 84 literacy sources published between 1967 and 2020 on the development and features of Anglican churches in Malaysia, along with recommendations on maintenance practices from the asset and facilities management perspective. The exploration of churches’ features follows three main disciplines in building maintenance according to the Jabatan Kerja Raya Guideline for as-built buildings in Malaysia.

Findings

The findings of the study have then been tabulated to form a maintenance framework to recommend suitable maintenance practices on specific building components based on different materials. The paper argues that as places of worship, the assets of religious facilities are intangible compared to any other types of building that serve a tangible function (i.e. shelter, commercial or industrial operation). Throughout the exploration of their maintenance practices suggested by vast sources of literature, it is proven that the maintenance of churches is not as straightforward as merely remedying the defects, but it requires the maintenance to radically minimise any disturbance to their aesthetics, thus making maintenance a more challenging task at churches.

Originality/value

This paper proposes a maintenance framework for Anglican churches in Malaysia by categorising building disciplines and their corresponding building components, which supports future research to improve the maintenance practices of religious facilities.

Details

Journal of Facilities Management , vol. 21 no. 4
Type: Research Article
ISSN: 1472-5967

Keywords

Content available
Article
Publication date: 1 December 1998

Lawrie Hurst

160

Abstract

Details

Structural Survey, vol. 16 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 March 2004

Petros I. Komodromos and John R. Williams

The discrete element methods (DEM) are numerical techniques that have been specifically developed to enable simulations of systems of multiple distinct, typically infinitely…

1025

Abstract

The discrete element methods (DEM) are numerical techniques that have been specifically developed to enable simulations of systems of multiple distinct, typically infinitely rigid, bodies that interact with each other through contact forces. However, there are multibody systems for which it is useful to consider the deformability of the simulated bodies and enable the evaluation of their stress and strain distributions. This paper focuses on the simulation of deformable multibody systems using a combination of DEM and finite element methods (FEM). In particular, an updated Lagrangian (UL) finite element (FE) formulation and an explicit time integration scheme are used together with some simplifying assumptions to linearize this highly nonlinear contact problem and obtain solutions with realistic computational cost and sufficiently good accuracy. In addition, this paper describes a software implementation of this formulation, which utilizes the Java programming language and the Java3D graphics application programming interface (API), as well as database technology.

Details

Engineering Computations, vol. 21 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000