Search results

1 – 1 of 1
Open Access
Article
Publication date: 30 September 2020

Li Liu, ChengYang Zhou, Xiao Pei, LiZhu Guo, JiaHuan Li, RuiXin Wu and Ding Huang

The purpose of this study is to examine the effects of nitrogen (N) deposition on clonal growth in a rhizome clonal plant, Leymus chinensis (Trin.) Tzvel.

Abstract

Purpose

The purpose of this study is to examine the effects of nitrogen (N) deposition on clonal growth in a rhizome clonal plant, Leymus chinensis (Trin.) Tzvel.

Design/methodology/approach

The study established seven N concentration gradients (0, 2, 4, 8, 16, 32 and 64 g N m−2) to simulate the continuous increase in N deposition for the cultivation of L. chinensis seedlings and assess the response mechanism of the cloned L. chinensis plant at different N levels by analyzing the aboveground and belowground plant appearance traits, parent ramets and daughter ramets of resource allocation and biomass allocation.

Findings

The results of this study showed that the different N treatment levels could promote clonal growth and had certain regularity under the seven treatments. The addition of N could significantly increase the ramet number, rhizome length, rhizome spacer length, biomass of mother ramets, daughter ramets and belowground L. chinensis population when the N addition was greater than 4 g m−2; however, the clonal growth ability of L. chinensis decreased and the rhizome length, ramet number, stem and leaf biomass of daughter ramets and stem biomass of mother ramets significantly decreased when the N addition was greater than 32 g N m−2.

Originality/value

With global warming, atmospheric N deposition is increasing and it is of great significance to explore the response mechanism of different N levels for the growth of clone plants. This study provides basic data and a theoretical basis for the survival prediction of cloned plants under the background of a global climate change strategy and has important theoretical and practical significance for the scientific management of grasslands in the future.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Access

Only Open Access

Year

Content type

1 – 1 of 1