Search results

1 – 10 of over 2000
Content available
Article
Publication date: 1 August 1999

130

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 16 August 2022

Ziqiang Lin, Xianchun Liao and Haoran Jia

The decarbonization of power generation is key to achieving carbon neutrality in China by the end of 2060. This paper aims to examine how green finance influences China’s…

2673

Abstract

Purpose

The decarbonization of power generation is key to achieving carbon neutrality in China by the end of 2060. This paper aims to examine how green finance influences China’s low-carbon transition of power generation. Using a provincial panel data set as an empirical study example, green finance is assessed first, then empirically analyses the influences of green finance on the low-carbon transition of power generation, as well as intermediary mechanisms at play. Finally, this paper makes relevant recommendations for peak carbon and carbon neutrality in China.

Design/methodology/approach

To begin with, an evaluation index system with five indicators is constructed with entropy weighting method. Second, this paper uses the share of coal-fired power generation that takes in total power generation as an inverse indicator to measure the low-carbon transition in power generation. Finally, the authors perform generalized method of moments (GMM) econometric model to examine how green finance influences China’s low-carbon transition of power generation by taking advantage of 30 provincial panel data sets, spanning the period of 2007–2019. Meanwhile, the implementation of the 2016 Guidance on Green Finance is used as a turning point to address endogeneity using difference-in-difference method (DID).

Findings

The prosperity of green finance can markedly reduce the share of thermal power generation in total electricity generation, which implies a trend toward China’s low-carbon transformation in the power generation industry. Urbanization and R&D investment are driving forces influencing low-carbon transition, while economic development hinders the low-carbon transition. The conclusions remain robust after a series of tests such as the DID method, instrumental variable method and replacement indicators. Notably, the results of the mechanism analysis suggest that green finance contributes to low-carbon transformation in power generation by reducing secondary sectoral share, reducing the production of export products, promoting the advancement of green technologies and expanding the proportion of new installed capacity of renewable energy.

Research limitations/implications

This paper puts forward relevant suggestions for promoting the green finance development with countermeasures such as allowing low interest rate for renewable energy power generation, facilitating market function and using carbon trade market. Additional policy implication is to promote high quality urbanization and increase R&D investment while pursuing high quality economic development. The last implication is to develop mechanism to strengthen the transformation of industrial structure, to promote high quality trade from high carbon manufactured products to low-carbon products, to stimulate more investment in green technology innovation and to accelerate the greening of installed structure in power generation industry.

Originality/value

This paper first attempts to examine the low-carbon transition in power generation from a new perspective of green finance. Second, this paper analyses the mechanism through several aspects: the share of secondary industry, the output of exported products, advances in green technology and the share of renewable energy in new installed capacity, which has not yet been done. Finally, this study constructs a system of indicators to evaluate green finance, including five indicators with entropy weighting method. In conclusion, this paper provides scientific references for sustainable development in China, and meanwhile for other developing countries with similar characteristics.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Content available
Book part
Publication date: 16 August 2021

Martin Cathcart Frödén

Abstract

Details

A Circular Argument
Type: Book
ISBN: 978-1-80071-385-7

Content available
Article
Publication date: 1 June 2005

154

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Book part
Publication date: 16 August 2021

Martin Cathcart Frödén

Abstract

Details

A Circular Argument
Type: Book
ISBN: 978-1-80071-385-7

Content available
Book part
Publication date: 16 August 2021

Martin Cathcart Frödén

Abstract

Details

A Circular Argument
Type: Book
ISBN: 978-1-80071-385-7

Content available
Article
Publication date: 14 June 2022

Larry Goodson

168

Abstract

Details

Strategy & Leadership, vol. 50 no. 4
Type: Research Article
ISSN: 1087-8572

Open Access
Article
Publication date: 16 July 2021

Gustavo Grander, Luciano Ferreira da Silva and Ernesto Del Rosário Santibañez Gonzalez

This paper aims to analyze how decision support systems manage Big data to obtain value.

3509

Abstract

Purpose

This paper aims to analyze how decision support systems manage Big data to obtain value.

Design/methodology/approach

A systematic literature review was performed with screening and analysis of 72 articles published between 2012 and 2019.

Findings

The findings reveal that techniques of big data analytics, machine learning algorithms and technologies predominantly related to computer science and cloud computing are used on decision support systems. Another finding was that the main areas that these techniques and technologies are been applied are logistic, traffic, health, business and market. This article also allows authors to understand the relationship in which descriptive, predictive and prescriptive analyses are used according to an inverse relationship of complexity in data analysis and the need for human decision-making.

Originality/value

As it is an emerging theme, this study seeks to present an overview of the techniques and technologies that are being discussed in the literature to solve problems in their respective areas, as a form of theoretical contribution. The authors also understand that there is a practical contribution to the maturity of the discussion and with reflections even presented as suggestions for future research, such as the ethical discussion. This study’s descriptive classification can also serve as a guide for new researchers who seek to understand the research involving decision support systems and big data to gain value in our society.

Details

Revista de Gestão, vol. 28 no. 3
Type: Research Article
ISSN: 1809-2276

Keywords

Content available
Book part
Publication date: 5 June 2023

Jan Macfarlane and Jerome Carson

Abstract

Details

Positive Psychology for Healthcare Professionals: A Toolkit for Improving Wellbeing
Type: Book
ISBN: 978-1-80455-957-4

Open Access
Article
Publication date: 21 August 2023

Michele Bufalo and Giuseppe Orlando

This study aims to predict overnight stays in Italy at tourist accommodation facilities through a nonlinear, single factor, stochastic model called CIR#. The contribution of this…

Abstract

Purpose

This study aims to predict overnight stays in Italy at tourist accommodation facilities through a nonlinear, single factor, stochastic model called CIR#. The contribution of this study is twofold: in terms of forecast accuracy and in terms of parsimony (both from the perspective of the data and the complexity of the modeling), especially when a regular pattern in the time series is disrupted. This study shows that the CIR# not only performs better than the considered baseline models but also has a much lower error than other additional models or approaches reported in the literature.

Design/methodology/approach

Typically, tourism demand tends to follow regular trends, such as low and high seasons on a quarterly/monthly level and weekends and holidays on a daily level. The data set consists of nights spent in Italy at tourist accommodation establishments as collected on a monthly basis by Eurostat before and during the COVID-19 pandemic breaking regular patterns.

Findings

Traditional tourism demand forecasting models may face challenges when massive amounts of search intensity indices are adopted as tourism demand indicators. In addition, given the importance of accurate forecasts, many studies have proposed novel hybrid models or used various combinations of methods. Thus, although there are clear benefits in adopting more complex approaches, the risk is that of dealing with unwieldy models. To demonstrate how this approach can be fruitfully extended to tourism, the accuracy of the CIR# is tested by using standard metrics such as root mean squared errors, mean absolute errors, mean absolute percentage error or average relative mean squared error.

Research limitations/implications

The CIR# model is notably simpler than other models found in literature and does not rely on black box techniques such as those used in neural network (NN) or data science-based models. The carried analysis suggests that the CIR# model outperforms other reference predictions in terms of statistical significance of the error.

Practical implications

The proposed model stands out for being a viable option to the Holt–Winters (HW) model, particularly when dealing with irregular data.

Social implications

The proposed model has demonstrated superiority even when compared to other models in the literature, and it can be especially useful for tourism stakeholders when making decisions in the presence of disruptions in data patterns.

Originality/value

The novelty lies in the fact that the proposed model is a valid alternative to the HW, especially when the data are not regular. In addition, compared to many existing models in the literature, the CIR# model is notably simpler and more transparent, avoiding the “black box” nature of NN and data science-based models.

设计/方法/方法

一般来说, 旅游需求往往遵循规律的趋势, 例如季度/月的淡季和旺季, 以及日常的周末和假期。该数据集包括欧盟统计局在打破常规模式的2019冠状病毒病大流行之前和期间每月收集的在意大利旅游住宿设施度过的夜晚。

目的

本研究旨在通过一个名为cir#的非线性单因素随机模型来预测意大利游客住宿设施的过夜住宿情况。这项研究的贡献是双重的:在预测准确性方面和在简洁方面(从数据和建模复杂性的角度来看), 特别是当时间序列中的规则模式被打乱时。我们表明, cir#不仅比考虑的基线模型表现更好, 而且比文献中报告的其他模型或方法具有更低的误差。

研究结果

当大量搜索强度指标被作为旅游需求指标时, 传统的旅游需求预测模型将面临挑战。此外, 鉴于准确预测的重要性, 许多研究提出了新的混合模型或使用各种方法的组合。因此, 尽管采用更复杂的方法有明显的好处, 但风险在于处理难使用的模型。为了证明这种方法能有效地扩展到旅游业, 使用RMSE、MAE、MAPE或AvgReIMSE等标准指标来测试cir#的准确性。

研究局限/启示

cir#模型明显比文献中发现的其他模型简单, 并且不依赖于黑盒技术, 例如在神经网络或基于数据科学的模型中使用的技术。所进行的分析表明, cir#模型在误差的统计显著性方面优于其他参考预测。

实际意义

这个模型作为Holt-Winters模型的一个拟议模型, 特别是在处理不规则数据时。

社会影响

即使与文献中的其他模型相比, 所提出的模型也显示出优越性, 并且在数据模式中断时对旅游利益相关者做出决策特别有用。

创意/价值

创新之处在于所提出的模型是Holt-Winters模型的有效替代方案, 特别是当数据不规律时。此外, 与文献中的许多现有模型相比, cir#模型明显更简单、更透明, 避免了神经网络和基于数据科学的模型的“黑箱”性质。

Diseño/metodología/enfoque

Normalmente, la demanda turística tiende a seguir tendencias regulares, como temporadas altas y bajas a nivel trimestral/mensual y fines de semana y festivos a nivel diario. El conjunto de datos consiste en las pernoctaciones en Italia en establecimientos de alojamiento turístico recogidas mensualmente por Eurostat antes y durante la pandemia de COVID-19, rompiendo los patrones regulares.

Objetivo

El presente estudio pretende predecir las pernoctaciones en Italia en establecimientos de alojamiento turístico mediante un modelo estocástico no lineal de un solo factor denominado CIR#. La contribución de este estudio es doble: en términos de precisión de la predicción y en términos de parsimonia (tanto desde la perspectiva de los datos como de la complejidad de la modelización), especialmente cuando un patrón regular en la serie temporal se ve interrumpido. Demostramos que el CIR# no sólo aplica mejor que los modelos de referencia considerados, sino que también tiene un error mucho menor que otros modelos o enfoques adicionales de los que se informa en la literatura.

Resultados

Los modelos tradicionales de previsión de la demanda turística pueden enfrentarse a desafíos cuando se adoptan cantidades masivas de índices de intensidad de búsqueda como indicadores de la demanda turística. Además, dada la importancia de unas previsiones precisas, muchos estudios han propuesto modelos híbridos novedosos o han utilizado diversas combinaciones de métodos. Así pues, aunque la adopción de enfoques más complejos presenta ventajas evidentes, el riesgo es el de enfrentarse a modelos poco manejables. Para demostrar cómo este enfoque puede extenderse de forma fructífera al turismo, se comprueba la precisión del CIR# utilizando métricas estándar como RMSE, MAE, MAPE o AvgReIMSE.

Limitaciones/implicaciones de la investigación

El modelo CIR# es notablemente más sencillo que otros modelos encontrados en la literatura y no se basa en técnicas de caja negra como las utilizadas en los modelos basados en redes neuronales o en la ciencia de datos. El análisis realizado sugiere que el modelo CIR# supera a otras predicciones de referencia en términos de significación estadística del error.

Implicaciones prácticas

El modelo propuesto destaca por ser una opción viable al modelo Holt-Winters, sobre todo cuando se trata de datos irregulares.

Implicaciones sociales

El modelo propuesto ha demostrado su superioridad incluso cuando se compara con otros modelos de la bibliografía, y puede ser especialmente útil para los agentes del sector turístico a la hora de tomar decisiones cuando se producen alteraciones en los patrones de datos.

Originalidad/valor

La novedad radica en que el modelo propuesto es una alternativa válida al Holt-Winters especialmente cuando los datos no son regulares. Además, en comparación con muchos modelos existentes en la literatura, el modelo CIR# es notablemente más sencillo y transparente, evitando la naturaleza de “caja negra” de los modelos basados en redes neuronales y en ciencia de datos.

1 – 10 of over 2000