Search results

1 – 10 of 194
Article
Publication date: 5 August 2014

M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F. Yen, B.A. Cheeseman and J.S. Montgomery

The purpose of this paper is to develop multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been improved with respect to its…

Abstract

Purpose

The purpose of this paper is to develop multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been improved with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties (strength, in particular) within the weld.

Design/methodology/approach

The improved GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. A critical assessment is conducted of the basic foundation of the model, including its five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: first, electro-dynamics of the welding-gun; second, radiation/convection controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; third, prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; fourth, the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and fifth, spatial distribution of the as-welded material mechanical properties.

Findings

The predictions of the improved GMAW process model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To explain microstructure/property relationships within different portions of the weld, advanced physical-metallurgy concepts and principles are identified, and their governing equations parameterized and applied within a post-processing data-reduction procedure.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 March 2008

V. Valasamudram, S.S. Mohamed Nazirudeen, P. Chandramohan and K.P. Thenmozhi

The main purpose of this paper is to produce high‐nitrogen martensitic stainless steels (HNMSS) using a conventional induction furnace with better mechanical properties and to…

Abstract

Purpose

The main purpose of this paper is to produce high‐nitrogen martensitic stainless steels (HNMSS) using a conventional induction furnace with better mechanical properties and to improve the properties by thermo‐mechanical treatment (TMT).

Design/methodology/approach

Production of two types of HNMSS alloys with Chromium – 8.22 and 15.84 wt% was carried out using a conventional melting furnace. The theoretical nitrogen solubility of the produced alloys was calculated and compared with the actual nitrogen solubility of the alloys. The produced alloys were subjected to TMT, characterized by hardness measurement, tensile testing micro examinations in the as cast, hardened, TMT treated and TMT hardened and tempered conditions.

Findings

The actual nitrogen solubility achieved in the HNMSS specimens was in agreement with the calculated theoretical nitrogen solubility using thermodynamic relationships. Thermo‐mechanically treated specimens exhibited the break‐up and refinement of the original coarse cast structure by repeated recrystallization as fine grain size in the austenitic condition and reduced proportion of residual deformed δ ferrite. Thermo‐mechanically treated, hardened and tempered specimens showed higher hardness up to 525 VHN, with strength and toughness.

Research limitations/limitations

In the conventional melting process, purging nitrogen into the melt and increasing the percentage of nitrogen is the primary limitation and retaining the same into the solution during thermo‐mechanical treatment is the secondary limitation.

Originality/value

Work on melting of nitrogenated steels using controlled atmospheric conditions with special equipment was carried out earlier. This practice cannot be adopted on a commercial basis, where mass production is the prime requirement. Therefore, the uniqueness of this paper lies in communicating the melting practice of HNMSS using a conventional induction furnace followed by the optimum TMT. This takes the production and TMT of HNMSS into the commercial casting industry for mass production.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 February 2022

Chang Zhao, Li Zhou and Tao Qiu

Adaptive bump inlet can adaptively change the shape of inlet bump surface according to the flight speed of aircraft, ensuring that the inlet has good inlet-engine match…

Abstract

Purpose

Adaptive bump inlet can adaptively change the shape of inlet bump surface according to the flight speed of aircraft, ensuring that the inlet has good inlet-engine match performance in a wide speed range. This paper aims to use a composite flexible skin reinforced by shape memory alloy (SMA) fiber as the deformable structure at bump surface to realize the adjustable bump surface of adaptive bump inlet.

Design/methodology/approach

According to the deformation and load-bearing requirements of adaptive bump, SMA is applied to the design of adaptive bump inlet due to its characteristic of super-elasticity. A kind of SMA fiber is studied. A composite flexible skin reinforced by SMA is proposed, and its mechanical properties are analyzed. On this basis, an adaptive bump inlet is designed in which the composite flexible skin reinforced by SMA is used as bump surface, and the shape of the bump surface is adjusted by way of pressuring. The design scheme and specific parameters of the adaptive bump are given.

Findings

An adaptive bump surface that meets the design requirements of the inlet is designed, which can effectively adjust the inlet throat area with a throat area change rate of 20%.

Originality/value

An adaptive bump inlet with composite flexible skin as a deformable structure at bump surface is designed, and SMA is applied as the reinforcing fiber.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 January 2022

Adelaide Nespoli, Nicola Bennato, Elena Villa and Francesca Passaretti

This paper aims to investigate the microstructural anisotropy of Ti-6Al-4V samples fabricated by selective laser melting.

Abstract

Purpose

This paper aims to investigate the microstructural anisotropy of Ti-6Al-4V samples fabricated by selective laser melting.

Design/methodology/approach

Specimens are fabricated through a Renishaw AM400 selective laser melting machine. Three microstructures (as-built, 850°C annealed and 1,050°C annealed) and two building orientations, parallel (PA) and perpendicular (PE) to the building platform, are considered. Starting from in-depth microscopic observations and comprehensive electron backscattered diffraction imaging, the study addresses non-conventional techniques such as internal friction and electrical resistivity measurements to assess the anisotropy of the fabricated parts.

Findings

Microscope observations highlight a fine texture with columnar grains parallel to the building direction in the as-built and 850°C annealed samples. Besides, coarse grains characterized the 1,050°C annealed specimens. Internal friction measurements pointed out the presence of internal stress while storage modulus analyses appear sensitive to texture. Electrical resistivity is resulted to be dependent on grain orientation.

Originality/value

The work uses some novel characterization techniques to study the anisotropy and internal stresses of Ti-6Al-4V samples processed by selective laser melting. Mechanical spectroscopy results suitable in this kind of study, as it mimics the operating conditions of the material.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 February 2022

Rama Pavan Kumar Varma Indukuri, Rama Murty Raju Penmetsa, Srinivasa Rao Chalamalasetti and Rajesh Siriyala

Military and unmanned aerial vehicles (UAV) applications like rocket motor casings, missile covers and ship hulls use components that are made of maraging steel. Maraging steel…

34

Abstract

Purpose

Military and unmanned aerial vehicles (UAV) applications like rocket motor casings, missile covers and ship hulls use components that are made of maraging steel. Maraging steel has properties that are superior to other metals, making it more suitable for the fabrication of such components. A grey relational analysis (GRA) that is based on the Taguchi method has been utilised in the current study to optimise a laser beam welding (LBW) process. Further aspects such as GRA's optimum ranges and percentage contributions were also estimated.

Design/methodology/approach

A Taguchi L16 orthogonal array is utilised to design and conduct the experiments. Laser power (LP), welding speed (WS) and focal position (FP) are the three parameters are chosen for the process of welding. The output responses are the upper width of the heat-affected zone (HAZup), the upper width of the fusion zone (FZup) and the depth of penetration (DOP). The effect of the above key parameters on the responses was examined using an analysis of variance (ANOVA).

Findings

The results of ANOVA reveal that the parameter that has the most influence on the overall grey relational grade (GRG) is the FP. Finally, metallographic characterisation and a microstructural analysis are conducted on the weld bead geometry to demarcate the zone of HAZ and fusion zone (FZ).

Originality/value

As the most important criteria for LBW of maraging steels is the provision of higher DOP, higher FZ width and lower heat-affected zone, the study intended to prove the applicability of GRA technique in solving multi-objective optimisation problems in applications like defence and unmanned systems.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 April 2018

Daniel de Bortoli, Fauzan Adziman, Eduardo A. de Souza Neto and Francisco M. Andrade Pires

The purpose of this work is to apply a recently proposed constitutive model for mechanically induced martensitic transformations to the prediction of transformation loci…

Abstract

Purpose

The purpose of this work is to apply a recently proposed constitutive model for mechanically induced martensitic transformations to the prediction of transformation loci. Additionally, this study aims to elucidate if a stress-assisted criterion can account for transformations in the so-called strain-induced regime.

Design/methodology/approach

The model is derived by generalising the stress-based criterion of Patel and Cohen (1953), relying on lattice information obtained using the Phenomenological Theory of Martensite Crystallography. Transformation multipliers (cf. plastic multipliers) are introduced, from which the martensite volume fraction evolution ensues. The associated transformation functions provide a variant selection mechanism. Austenite plasticity follows a classical single crystal formulation, to account for transformations in the strain-induced regime. The resulting model is incorporated into a fully implicit RVE-based computational homogenisation finite element code.

Findings

Results show good agreement with experimental data for a meta-stable austenitic stainless steel. In particular, the transformation locus is well reproduced, even in a material with considerable slip plasticity at the martensite onset, corroborating the hypothesis that an energy-based criterion can account for transformations in both stress-assisted and strain-induced regimes.

Originality/value

A recently developed constitutive model for mechanically induced martensitic transformations is further assessed and validated. Its formulation is fundamentally based on a physical metallurgical mechanism and derived in a thermodynamically consistent way, inheriting a consistent mechanical dissipation. This model draws on a reduced number of phenomenological elements and is a step towards the fully predictive modelling of materials that exhibit such phenomena.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 May 2022

Zhenbo Qin, Xuehan Li, Da-Hai Xia, Yiwen Zhang, Zhong Wu and Wenbin Hu

The purpose of this paper is to clarify the effect of compressive stress on cavitation-erosion corrosion behavior of 304 stainless steel.

Abstract

Purpose

The purpose of this paper is to clarify the effect of compressive stress on cavitation-erosion corrosion behavior of 304 stainless steel.

Design/methodology/approach

Compressive stresses of 60 MPa and 120 MPa were applied to 304 stainless steel through a self-designed loading device, and cavitation erosion-corrosion tests were performed using an ultrasonically vibratory apparatus. Scanning electron microscope and X-ray diffraction were used to analyze the microstructure evolution, and corrosion behavior was studied by electrochemical analysis.

Findings

The cavitation weight loss of 304 stainless steel decreased with the compressive stress. After cavitation corroded for 8 h, the weight loss for the specimen with 120 MPa compressive stress was 5.11 mg/cm2, which was reduced by 56.7% from that of the specimen without loading stress (11.79 mg/cm2). The reason can be attributed to that compressive stress promoted the deformation-induced martensitic transformation during the cavitation process, which could not only provide a cushioning effect by absorbing cavitation impact energy but also improve the hardness of 304 stainless steel.

Originality/value

Compressive stress was found to restrain the cavitation damage on 304 stainless steel, and the corresponding mechanism was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 May 2015

Mica Grujicic, Subrahmanian Ramaswami, Jennifer Snipes, Rohan Galgalikar, Ramin Yavari, Chian-Fong Yen, Bryan Cheeseman and Jonathan Montgomery

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been…

Abstract

Purpose

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic limit (i.e. penetration resistance) of the weld.

Design/methodology/approach

The original model consists of five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: electro-dynamics of the welding-gun; radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and spatial distribution of the as-welded material mechanical properties. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones.

Findings

The upgraded GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to establish, using computational modeling, functional relationships between the GMAW process parameters and the mechanical properties controlling the ballistic limit of the resulting weld.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 July 2022

Sai Vamsi Krishna Tataverthi and Srinivasa Rao Devisetty

The purpose of this study is to assess the influence of Al and Ag addition on thermal, mechanical and shape memory properties of Cu-Al-Ag alloy.

Abstract

Purpose

The purpose of this study is to assess the influence of Al and Ag addition on thermal, mechanical and shape memory properties of Cu-Al-Ag alloy.

Design/methodology/approach

The material is synthesized in a controlled atmosphere to minimize the reaction of alloying elements with the atmosphere. Cast samples were homogenized, then subjected to hot rolling and further betatized, followed by step quenching. Eight samples were chosen for study among which first four samples varied in Al content, and the next set of four samples varied in Ag composition.

Findings

The testing yielded a result that the increase in binary alloying element decreased transformation temperature range but increased entropy and elastic energy values. It also improved the shape memory effect and mechanical properties (UTS and hardness). An increase in ternary alloying element increased transformation temperature range, entropy and elastic energy values. The shape memory effect and mechanical properties are enhanced by the increase in ternary alloying element. The study revealed that compositional variation of Al should be limited to a range of 8 to 14 Wt.% and Ag from 2 to 8 Wt.%. Microstructural and diffraction studies identified the ß’1 martensite as a desirable phase for enhancing shape memory properties.

Originality/value

Numerous studies have been made in exploring the transformation temperature and phase formation for similar Cu-Al-Ag shape memory alloys, but their influence on shape memory effect was not extensively studied. In the present work, the influence of Al and Ag content on shape memory characteristics is carried out to increase the design choice for engineering applications of shape memory alloy. These materials exhibit mechanical and shape memory properties within operating ranges similar to other copper-based shape memory alloys.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 June 2010

Oliver Kastner and Gunther Eggeler

Shape memory alloys are a fascinating class of materials because they combine both structural and functional properties. These properties strongly depend on temperature. One…

Abstract

Purpose

Shape memory alloys are a fascinating class of materials because they combine both structural and functional properties. These properties strongly depend on temperature. One consequence of this dependency yields the characteristic shape‐memory effect: shape memory alloys can recover processed reference configurations after significant plastic deformations simply upon a change of temperature. For real materials, such processes incorporate characteristic hysteresis. This paper aims at an understanding of these materials from an atomistic point of view.

Design/methodology/approach

2D molecular‐dynamics (MD) simulations describing a chain consisting of 32 linked Lennard‐Jones crystals are presented. The crystals consist of nested lattices of two atom species. Distinct lattice structures can be identified, interpreted as austenite and (variants of) martensite. Temperature and/or load‐induced phase transitions between these configurations are observed in MD simulations. Previously, the thermal equation of state of one isolated crystal was investigated and its phase stability was discussed in detail. In the multi‐crystal chain considered in the present paper, individual crystals contribute collectively to the thermo‐mechanical behavior of the assembly.

Findings

The paper presents the results of numerical experiments with this polycrystalline chain under strain‐, load‐ and/or temperature‐control. The results show that with the assumption of simple Lennard‐Jones potentials of interaction between atoms in individual crystals and linking these crystals allows to reproduce the features associated with the fascinating behavior of shape memory alloys, including pseudo‐plasticity, pseudo‐elasticity and the shape memory effect.

Originality/value

Owing to the special setup chosen, interfaces are missing between adjacent crystals in the chain assembly. The paper shows that in this situation load‐induced austenite/martensite transitions do not exhibit hysteresis in tension/compression cycles. This observation indirectly supports mesoscopic‐level work in the literature which explicitly introduces interface energy to model such hysteresis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 194