Search results

1 – 10 of 42
Article
Publication date: 12 January 2018

Yue Wang, Shusheng Zhang, Sen Yang, Weiping He and Xiaoliang Bai

This paper aims to propose a real-time augmented reality (AR)-based assembly assistance system using a coarse-to-fine marker-less tracking strategy. The system automatically…

1016

Abstract

Purpose

This paper aims to propose a real-time augmented reality (AR)-based assembly assistance system using a coarse-to-fine marker-less tracking strategy. The system automatically adapts to tracking requirement when the topological structure of the assembly changes after each assembly step.

Design/methodology/approach

The prototype system’s process can be divided into two stages: the offline preparation stage and online execution stage. In the offline preparation stage, planning results (assembly sequence, parts position, rotation, etc.) and image features [gradient and oriented FAST and rotated BRIEF (ORB)features] are extracted automatically from the assembly planning process. In the online execution stage, too, image features are extracted and matched with those generated offline to compute the camera pose, and planning results stored in XML files are parsed to generate the assembly instructions for manipulators. In the prototype system, the working range of template matching algorithm, LINE-MOD, is first extended by using depth information; then, a fast and robust marker-less tracker that combines the modified LINE-MOD algorithm and ORB tracker is designed to update the camera pose continuously. Furthermore, to track the camera pose stably, a tracking strategy according to the characteristic of assembly is presented herein.

Findings

The tracking accuracy and time of the proposed marker-less tracking approach were evaluated, and the results showed that the tracking method could run at 30 fps and the position and pose tracking accuracy was slightly superior to ARToolKit.

Originality/value

The main contributions of this work are as follows: First, the authors present a coarse-to-fine marker-less tracking method that uses modified state-of-the-art template matching algorithm, LINE-MOD, to find the coarse camera pose. Then, a feature point tracker ORB is activated to calculate the accurate camera pose. The whole tracking pipeline needs, on average, 24.35 ms for each frame, which can satisfy the real-time requirement for AR assembly. On basis of this algorithm, the authors present a generic tracking strategy according to the characteristics of the assembly and develop a generic AR-based assembly assistance platform. Second, the authors present a feature point mismatch-eliminating rule based on the orientation vector. By obtaining stable matching feature points, the proposed system can achieve accurate tracking results. The evaluation of the camera position and pose tracking accuracy result show that the study’s method is slightly superior to ARToolKit markers.

Details

Assembly Automation, vol. 38 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 20 October 2014

Ping Zhang, Guanglong Du and Di Li

The aim of this paper is to present a novel methodology which incorporates Camshift, Kalman filter (KFs) and adaptive multi-space transformation (AMT) for a human-robot interface…

Abstract

Purpose

The aim of this paper is to present a novel methodology which incorporates Camshift, Kalman filter (KFs) and adaptive multi-space transformation (AMT) for a human-robot interface, which perfects human intelligence and teleoperation.

Design/methodology/approach

In the proposed method, an inertial measurement unit is used to measure the orientation of the human hand, and a Camshift algorithm is used to track the human hand using a three-dimensional camera. Although the location and the orientation of the human can be obtained from the two sensors, the measurement error increases over time due to the noise of the devices and the tracking errors. KFs are used to estimate the location and the orientation of the human hand. Moreover, to be subject to the perceptive limitations and the motor limitations, human operator is hard to carry out the high precision operation. An AMT method is proposed to assist the operator to improve accuracy and reliability in determining the pose of the robot.

Findings

The experimental results show that this method would not hinder most natural human-limb motion and allows the operator to concentrate on his/her own task. Compared with the non-contacting marker-less method (Kofman et al., 2007), this method proves more accurate and stable.

Originality/value

The human-robot interface system was experimentally verified in a laboratory environment, and the results indicate that such a system can complete high-precision manipulation efficiently.

Details

Industrial Robot: An International Journal, vol. 41 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 December 2020

Ke Chen and Fan Xue

Augmented reality (AR) has become one of the most promising technologies in construction since it can seamlessly connect the physical construction environment and virtual…

1337

Abstract

Purpose

Augmented reality (AR) has become one of the most promising technologies in construction since it can seamlessly connect the physical construction environment and virtual contents. In view of the recent research efforts, this study attempts to summarize the latest research achievements and inform future development of AR in construction.

Design/methodology/approach

The review was conducted in three steps. First, a keyword search was adopted, and 546 papers were found from Scopus and Web of Science. Second, each paper was screened based on the selection criteria, and a final set of 69 papers was obtained. Third, specific AR applications and the associated technical details were extracted from the 69 papers for further analysis.

Findings

The review shows that: (1) design assessment, process monitoring and maintenance management and operation were the most frequently cited AR applications in the design, construction, and operation stages, respectively; (2) information browser and tangible interaction were more frequently adopted than collaborative interaction and hybrid interaction; and (3) AR has been integrated with BIM, computer vision, and cloud computing for enhanced functions.

Originality/value

The contributions of this study to the body of knowledge are twofold. First, this study extends the understanding of AR applications in the construction setting. Second, this study identifies possible improvements in the design and development of AR systems in order to leverage their benefits to construction.

Details

Smart and Sustainable Built Environment, vol. 11 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 15 April 2022

Heba Adel Ahmed Hussein

This study examines the benefits and potential applications of integrating augmented reality (AR) technology into landscape design education to create a more rewarding educational…

Abstract

Purpose

This study examines the benefits and potential applications of integrating augmented reality (AR) technology into landscape design education to create a more rewarding educational environment that provides an interesting learning atmosphere and deepens students' knowledge of the landscape design process.

Design/methodology/approach

Experimental method was conducted on the fourth-year architecture students at Port Said University. The experiment went through the following steps: a mobile-based AR application was designed, some exercises were developed and the students performed them using the application, and a questionnaire was formulated and distributed to the students to examine their feedback on integrating AR into the course.

Findings

The success of the experiment was evaluated based on the students' progress, tracked by the instructor, in the exercises and their feedback acquired from the questionnaire. The study found that the integration of AR with traditional teaching methods is perceived as being useful and having a positive impact on landscape design education.

Originality/value

Lessons learned from this study can help architectural educators in planning to use AR in their curricula to enrich architectural education.

Article
Publication date: 7 September 2015

X. Wang, S.K. Ong and A.Y.C. Nee

This paper aims to propose and implement an integrated augmented-reality (AR)-aided assembly environment to incorporate the interaction between real and virtual components, so…

Abstract

Purpose

This paper aims to propose and implement an integrated augmented-reality (AR)-aided assembly environment to incorporate the interaction between real and virtual components, so that users can obtain a more immersive experience of the assembly simulation in real time and achieve better assembly design.

Design/methodology/approach

A component contact handling strategy is proposed to model all the possible movements of virtual components when they interact with real components. A novel assembly information management approach is proposed to access and modify the information instances dynamically corresponding to user manipulation. To support the interaction between real and virtual components, a hybrid marker-less tracking method is implemented.

Findings

A prototype system has been developed, and a case study of an automobile alternator assembly is presented. A set of tests is implemented to validate the feasibility, efficiency, accuracy and intuitiveness of the system.

Research limitations/implications

The prototype system allows the users to manipulate and assemble the designed virtual components to the real components, so that the users can check for possible design errors and modify the original design in the context of their final use and in the real-world scale.

Originality/value

This paper proposes an integrated AR simulation and planning platform based on hybrid-tracking and ontology-based assembly information management. Component contact handling strategy based on collision detection and assembly feature surfaces mating reasoning is proposed to solve component degree of freedom.

Article
Publication date: 17 January 2018

Mohamed Zaher, David Greenwood and Mohamed Marzouk

The purpose of this paper is to facilitate the process of monitoring construction projects. Classic practice for construction progress tracking relies on paper reports, which…

3428

Abstract

Purpose

The purpose of this paper is to facilitate the process of monitoring construction projects. Classic practice for construction progress tracking relies on paper reports, which entails a serious amount of manual data collection as well as the effort of imagining the actual progress from the paperwork.

Design/methodology/approach

This paper presents a new methodology for monitoring construction progress using smartphones. This is done by proposing a new system consisting of a newly-developed application named “BIM-U” and a mobile augmented reality (AR) channel named “BIM-Phase”. “BIM-U” is an Android application that allows the end-user to update the progress of activities onsite. These data are used to update the project’s 4D model enhanced with different cost parameters such as earned value, actual cost and planned value. The “BIM-Phase” application is a mobile AR channel that is used during construction phase through implementing a 4D “as-planned” phased model integrated with an augmented video showing real or planned progress.

Findings

The results from the project are then analysed and assessed to anticipate the potential of these and similar techniques for tracking time and cost on construction projects.

Originality/value

The proposed system through “BIM-U” and “BIM Phase” exploits the potential of mobile applications and AR in construction through the use of handheld mobile devices to offer new possibilities for measuring and monitoring work progress using building information modelling.

Details

Construction Innovation, vol. 18 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 1 January 2006

Yan Pang, Andrew Y.C. Nee, Soh Khim Ong, Miaolong Yuan and Kamal Youcef‐Toumi

This paper aims to apply the augmented reality (AR) technology to assembly design in the early design stage. A proof‐of‐concept system with AR interface is developed.

2063

Abstract

Purpose

This paper aims to apply the augmented reality (AR) technology to assembly design in the early design stage. A proof‐of‐concept system with AR interface is developed.

Design/methodology/approach

Through AR interface, designers can design the assembly on the real assembly platform. The system helps users to design the assembly features to provide proper part‐part constraints in the early design stage. The virtual assembly features are rendered on the real assembly platform using AR registration techniques. The new evaluated assembly parts can be generated in the AR interface and assembled to assembly platform through assembly features. The model‐based collision detection technique is implemented for assembly constraint evaluation.

Findings

With AR interface, it would be possible to combine some of the benefits of both physical and virtual prototyping (VP). The AR environment can save a lot of computation resource compared to a totally virtual environment. Working on real assembly platform, designers have more realistic feel and the ability to design an assembly in a more intuitive way.

Research limitations/implications

More interaction tools need to be developed to support the complex assembly design efficiently.

Practical implications

The presented system encourages designers to consider the assembly issues in the early design stage. The primitive 3D models of assembly parts with proper part‐part constraints are generated using the system before doing detailed geometry design.

Originality/value

A new markerless registration approach for AR system is presented. This generic approach can be also used for other AR applications.

Details

Assembly Automation, vol. 26 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 22 August 2023

Mahesh Babu Purushothaman and Kasun Moolika Gedara

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and…

1310

Abstract

Purpose

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and embedded cameras) that aids in manual lifting human pose deduction, analysis and training in the construction sector.

Design/methodology/approach

Using a pragmatic approach combined with the literature review, this study discusses the SVBM. The research method includes a literature review followed by a pragmatic approach and lab validation of the acquired data. Adopting the practical approach, the authors of this article developed an SVBM, an AI program to correlate computer vision (recorded and live videos using mobile and embedded cameras).

Findings

Results show that SVBM observes the relevant events without additional attachments to the human body and compares them with the standard axis to identify abnormal postures using mobile and other cameras. Angles of critical nodal points are projected through human pose detection and calculating body part movement angles using a novel software program and mobile application. The SVBM demonstrates its ability to data capture and analysis in real-time and offline using videos recorded earlier and is validated for program coding and results repeatability.

Research limitations/implications

Literature review methodology limitations include not keeping in phase with the most updated field knowledge. This limitation is offset by choosing the range for literature review within the last two decades. This literature review may not have captured all published articles because the restriction of database access and search was based only on English. Also, the authors may have omitted fruitful articles hiding in a less popular journal. These limitations are acknowledged. The critical limitation is that the trust, privacy and psychological issues are not addressed in SVBM, which is recognised. However, the benefits of SVBM naturally offset this limitation to being adopted practically.

Practical implications

The theoretical and practical implications include customised and individualistic prediction and preventing most posture-related hazardous behaviours before a critical injury happens. The theoretical implications include mimicking the human pose and lab-based analysis without attaching sensors that naturally alter the working poses. SVBM would help researchers develop more accurate data and theoretical models close to actuals.

Social implications

By using SVBM, the possibility of early deduction and prevention of musculoskeletal disorders is high; the social implications include the benefits of being a healthier society and health concerned construction sector.

Originality/value

Human pose detection, especially joint angle calculation in a work environment, is crucial to early deduction of muscoloskeletal disorders. Conventional digital technology-based methods to detect pose flaws focus on location information from wearables and laboratory-controlled motion sensors. For the first time, this paper presents novel computer vision (recorded and live videos using mobile and embedded cameras) and digital image-related deep learning methods without attachment to the human body for manual handling pose deduction and analysis of angles, neckline and torso line in an actual construction work environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 25 September 2019

Krishna Teja Perannagari and Somnath Chakrabarti

The purpose of this paper is to examine the impact of augmented reality (AR) on retailing by conducting thematic analysis on variables studied in the existing literature.

7275

Abstract

Purpose

The purpose of this paper is to examine the impact of augmented reality (AR) on retailing by conducting thematic analysis on variables studied in the existing literature.

Design/methodology/approach

The data set includes 232 variables studied in 35 research papers, collected using well-defined search and inclusion criteria. Thematic analysis is used to identify patterns in the data set.

Findings

The eight themes emerging from the analysis are arranged in the form of a conceptual framework to model the decision-making process of users. The position of themes in the model is determined by the most dominant variable type in the theme and by employing the technology acceptance model as the reference paradigm.

Research limitations/implications

The current review contributes to the advancement of literature by setting a research agenda for scholars working in the field of consumer behavior and human–computer interaction. Future research should improve the generalizability of the research by replicating the method and testing the conceptual framework on other immersive technologies.

Practical implications

Marketers should incorporate AR technology into their experiential marketing strategies. Since integrating and managing AR technology requires expertise, organizations are advised to make use of existing toolkits or collaborate with technology companies to develop their offerings.

Originality/value

To maintain the uniqueness of the current study from other papers focusing on existing research done in this area, this review considers only studies using statistical techniques to study consumer behavior pertaining to AR in retail. The study uses an unconventional method for identifying patterns in the existing literature by employing theories and frameworks as the basis of classification.

Details

International Journal of Retail & Distribution Management, vol. 48 no. 1
Type: Research Article
ISSN: 0959-0552

Keywords

Article
Publication date: 17 May 2022

Aso Hajirasouli, Saeed Banihashemi, Rob Drogemuller, Abdulwahed Fazeli and Saeed Reza Mohandes

This study aims to present a comprehensive review, critical analysis and implications of the augmented reality (AR) application and implementation in the construction industry…

1636

Abstract

Purpose

This study aims to present a comprehensive review, critical analysis and implications of the augmented reality (AR) application and implementation in the construction industry arena and demonstrate the gaps along with the future research agenda.

Design/methodology/approach

The construction industry has been under pressure to improve its productivity, quality and sustainability. However, the conventional methods and technologies cannot respond to this industry's ever-growing demands while emerging and innovative technologies such as building information modelling, artificial intelligence (AI), virtual reality (VR) and AR have emerged and can be used to address this gap. AR application has been acknowledged as one of the most impactful technologies in the construction digitalization process. However, a comprehensive understanding of the AR application, its areas of effectiveness and overarching implications in a construction project life cycle remain vague. Therefore, this study uses an integration of systematic literature review and thematic analysis techniques to identify the phases of a construction project life cycle in which AR is the most effective, the current issues and problems of the conventional methods, the augmented parameters, the immediate effects of using AR on each phase and, eventually, the overall influence of AR on the entire project. Nvivo qualitative data analysis software was used to code, categorize and create themes from the collected data. The result of data analysis was used to develop four principal frameworks of the AR applications – design and constructability review session; construction operation; construction assembly; and maintenance and defect inspection and management – and the gap analysis along with the future research agenda.

Findings

The findings of this study indicated that the application of AR can be most effective in the following four stages of a project life cycle: design and constructability review session; construction operation; construction assembly; and site management and maintenance, including site management and defect inspection. The results also showed that the application of AR technology in the construction industry can align and address building industry objectives by various elements such as: reducing project costs through the application of digital technologies, saving time, meeting deadlines and reduction in project delays through integrated, live scheduling and increased safety and quality of the construction work and workers.

Research limitations/implications

One of the main limitations of this study was the lack of materials and resources on the downfalls and shortcomings of using immersive technologies, AR, in the construction project life cycle. In addition, most of the reviewed papers were focused on the experiments with simulations and in the lab environment, rather than real experiments in real construction sites and projects. This may cause limitations and inaccuracy of the collected and reported data.

Practical implications

The results of this study indicated that the application of AR technology in construction industry can align and address building industry objectives by various elements such as: reducing project costs through the application of digital technologies; saving time; meeting deadlines and reduction in project delays through integrated, live scheduling; and increased safety and quality of the construction work and workers.

Social implications

Application of AR in the various stages of a project life cycle can increase the safety and quality of the construction work and workers.

Originality/value

The reviewed literature indicated that substantial research and studies are yet to be done, to demonstrate the full capacity and impact of these emerging technologies in the field. The collected data and literature indicate that amongst the digital technologies, AR is one of the least researched topics in the field. Therefore, this study aims to examine the application of AR in construction projects’ life cycle to identify the stages and practices of a project life cycle where AR and its capabilities can be exploited and to identify the respective problems and issues of the conventional methods and the ways in which AR can address those shortcomings. Furthermore, this study focuses on identifying the overall outcome of AR applications in a construction project in terms of cost and time efficiency, process precision and safety.

1 – 10 of 42