Search results

1 – 4 of 4
Article
Publication date: 27 May 2014

Agata Skwarek, Jan Kulawik, Andrzej Czerwinski, Mariusz Pluska and Krzysztof Witek

The purpose of this study is to develop a testing method for tin pest in tin – copper (SnCu) alloys. Tin pest is the allotropic transformation of white β-tin (body-centered…

1001

Abstract

Purpose

The purpose of this study is to develop a testing method for tin pest in tin – copper (SnCu) alloys. Tin pest is the allotropic transformation of white β-tin (body-centered tetragonal structure) into gray α-tin (diamond cubic structure) at temperatures < 13.2°C.

Design/methodology/approach

Bulk samples of Sn99Cu1 weight per cent (purity, 99.9 weight per cent) were cast in the form of roller-shaped ingots with a diameter of 1.0 cm and a height of 0.7 cm. The samples were then divided into four groups. The first group included samples artificially inoculated with α-tin powder. The second group was inoculated in the same way as the samples from the first group but additionally subjected to mechanical pressing. The third group of ingots was only subjected to mechanical pressing. The fourth group of samples consisted of as-received roller-shaped ingots.All samples were divided into two groups and kept either at −18°C or at −30°C for the low-temperature storage test. For tin pest identification, a visual inspection was made, using a Hirox digital microscope over 156 days at intervals not longer than 14 days. The plot of the transformation rate, presented as the average increase in the area of α-tin warts in time, was also determined. To demonstrate the differences between regions of β- and α-tin, scanning ion microscopy observations using the focused ion beam technique was performed.

Findings

The first symptoms of tin pest were observed for the inoculated, mechanically pressed samples stored at −18°C, as well as those at −30°C, after less than 14 days. In the first stage of transformation, the rate was higher at −30°C for some time but, after about 75 days of storage at sub-zero temperatures, the rate at −30°C became lower compared to the rate at −18°C. Inoculation via the application of substances which are structurally similar to α-tin was efficient for the proposed new approach of rapid testing only when applied with simultaneous mechanical pressing. Infection from pressed-in seeds, leading to conventional seeded growth, was more rapid than infection in contact with seeds (without mechanical pressing), where the transition mechanism was induced by the epitaxial growth of metastable ice.

Originality/value

The new rapid method for the diagnostic testing of the susceptibility of different SnCu alloys to tin pest in a period much shorter than 14 days (within single days for storage at −30°C) is proposed and described. The test procedure described in this paper produced results several times quicker than conventional procedures, which may take years. In effect, the behavior of tin alloys in the face of tin pest may be predicted much more easily and much earlier. The same procedure can be applied to other SnCu alloys used in electronics (and in other areas), if the test samples are prepared in a similar manner.

Details

Soldering & Surface Mount Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 June 2011

Agata Skwarek, Marcin Sroda, Mariusz Pluska, Andrzej Czerwinski, Jacek Ratajczak and Krzysztof Witek

The purpose of this paper is to investigate tin pest formation in lead‐free alloys.

Abstract

Purpose

The purpose of this paper is to investigate tin pest formation in lead‐free alloys.

Design/methodology/approach

Samples of Sn99.5Ag3.0Cu0.5, Sn99Cu1 and Sn98Cu2 alloys were prepared in four different forms. The first group was prepared using traditional PCB technology and a hand soldering method. The next group of samples was composed of as‐received ingots of these alloys. To check the impact of mechanical treatment on the transformation process, additional cold‐worked and cold‐rolled samples were prepared (30 kN). All samples were placed initially either at −18°C or at −65°C for low temperature storage testing. Visual observations, scanning electron microscopy observations and X‐ray diffraction analysis were performed to identify the transformation process. Additional samples were prepared using a force of 75 kN and placed in a chamber at a temperature of −30°C for long‐term testing.

Findings

The detectable symptoms of tin pest in samples subjected to mechanical processing with 1 and 2 wt.% of Cu addition stored at −18°C were observed at the edges of the samples after 17 months of storage. Further aging at −18°C showed the progress of α/β transformation with time under low‐temperature stress, but only in these specimens. With the application of greater force to the pressing process (75 kN instead of 30 kN) and at a temperature of storage close to the maximal transformation rate (−30°C), there was a significant acceleration of the α/β transformation, and this dependence can be used in predicting the risk of tin pest occurrence in various lead‐free alloys.

Originality/value

The paper shows that the degree of mechanical processing had a great influence on the α/β transformation rate. Based on these observations, it is proposed that such mechanically processed samples can be used for accelerated testing of tin‐rich lead‐free alloys at low temperatures. Such tests would be appropriate for a practical estimation of the tin pest risk when the design life of some electronic equipment ranges from 15 to 25 years.

Details

Soldering & Surface Mount Technology, vol. 23 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 August 2014

P. Kowalik, Z. Pruszowski, J. Kulawik, Andrzej Czerwiński and Mariusz Pluska

This paper aims to select parameters such as temperature thermal stability and temperature coefficient of resistance (TCR) for Ni–P resistive alloys obtained by electroless…

Abstract

Purpose

This paper aims to select parameters such as temperature thermal stability and temperature coefficient of resistance (TCR) for Ni–P resistive alloys obtained by electroless metallization. Ni–P alloys are used in the manufacture of precision resistors characterized by TCR in the range of ± 10 ppm/K. The correlation of the technological parameters with the electrical properties of resistors enables the accurate prediction of the TCR resistors.

Design/methodology/approach

The Ni–P layers were obtained by a continuous process at about 373 K in a solution with the acidity of pH = 2 and then dried for two hours at 393 K. Subsequently, the Ni–P layer was stabilized for two hours in the temperature range of 453-533 K. Resistance was measured with an accuracy of 1 mΩ. TCR was determined with an accuracy of 1 ppm/K in the temperature range 298-398 K. In the next stage of the investigation, the increase in TCR of the Ni–P alloy was correlated with the increase in stabilization temperature. Scanning electron microscope images of the alloy surface were studied to assess grain sizes and to relate the average grain size with TCR values of resistive alloys. The X-ray diffraction analysis was performed to determine the crystallization temperature of Ni–P alloy.

Findings

The conducted investigation showed that the TCR increase in alloy is a linear function of stabilization temperature in the temperature range in which transition from amorphous phase to crystalline phases did not occur. TCR increase in Ni–P alloy arises from the increase of average size of grains resulting in decrease of scattering of electrons on grain boundaries. The analysis of alloy composition in chosen fragments of surface shows inhomogeneity growing with decreasing analyzed surface dimensions which proves that, before the stabilization, the structural arrangement of alloy is inconsiderable.

Originality/value

The obtained results are the first attempt to relate the morphology of surface with TCR of alloy and demonstration of linear dependence between an increase in TCR of amorphic Ni–P alloy and stabilization temperature of resistive layer. Such correlations are not described in available literature.

Details

Microelectronics International, vol. 31 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Content available
Article
Publication date: 28 June 2011

Martin Goosey

6

Abstract

Details

Soldering & Surface Mount Technology, vol. 23 no. 3
Type: Research Article
ISSN: 0954-0911

Access

Year

Content type

Article (4)
1 – 4 of 4