Search results

1 – 2 of 2
To view the access options for this content please click here
Article
Publication date: 11 November 2019

Marimuthu Kannimuthu, Benny Raphael, Palaneeswaran Ekambaram and Ananthanarayanan Kuppuswamy

Construction firms keep minimal resources to maintain productive working capital. Hence, resources are constrained and have to be shared among multiple projects in an…

Abstract

Purpose

Construction firms keep minimal resources to maintain productive working capital. Hence, resources are constrained and have to be shared among multiple projects in an organization. Optimal allocation of resources is a key challenge in such situations. Several approaches and heuristics have been proposed for this task. The purpose of this paper is to compare two approaches for multi-mode resource-constrained project scheduling in a multi-project environment. These are the single-project approach (portfolio optimization) and the multi-project approach (each project is optimized individually, and then heuristic rules are used to satisfy the portfolio constraint).

Design/methodology/approach

A direct search algorithm called Probabilistic Global Search Lausanne is used for schedule optimization. Multiple solutions are generated that achieve different trade-offs among the three criteria, namely, time, cost and quality. Good compromise solutions among these are identified using a multi-criteria decision making method, Relaxed Restricted Pareto Version 4. The solutions obtained using the single-project and multi-project approaches are compared in order to evaluate their advantages and disadvantages. Data from two sources are used for the evaluation: modified multi-mode resource-constrained project scheduling problem data sets from the project scheduling problem library (PSPLIB) and three real case study projects in India.

Findings

Computational results prove the superiority of the single-project approach over heuristic priority rules (multi-project approach). The single-project approach identifies better solutions compared to the multi-project approach. However, the multi-project approach involves fewer optimization variables and is faster in execution.

Research limitations/implications

It is feasible to adopt the single-project approach in practice; realistic resource constraints can be incorporated in a multi-objective optimization formulation; and good compromise solutions that achieve acceptable trade-offs among the conflicting objectives can be identified.

Originality/value

An integer programming model was developed in this research to optimize the multiple objectives in a multi-project environment considering explicit resource constraints and maximum daily costs constraints. This model was used to compare the performance of the two multi-project environment approaches. Unlike existing work in this area, the model used to predict the quality of activity execution modes is based on data collected from real construction projects.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

To view the access options for this content please click here
Article
Publication date: 2 January 2019

Marimuthu Kannimuthu, Benny Raphael, Ekambaram Palaneeswaran and Ananthanarayanan Kuppuswamy

The purpose of this paper is to develop a framework to optimize time, cost and quality in a multi-mode resource-constrained project scheduling environment.

Abstract

Purpose

The purpose of this paper is to develop a framework to optimize time, cost and quality in a multi-mode resource-constrained project scheduling environment.

Design/methodology/approach

A case study approach identified the activity execution modes in building construction projects in India to support multi-mode resource-constrained project scheduling. The data required to compute time, cost and quality of each activity are compiled from real construction projects. A binary integer-programming model has been developed to perform multi-objective optimization and identify Pareto optimal solutions. The RR-PARETO3 algorithm was used to identify the best compromise trade-off solutions. The effectiveness of the proposed framework is demonstrated through sample case study projects.

Findings

Results show that good compromise solutions are obtained through multi-objective optimization of time, cost and quality.

Research limitations/implications

Case study data sets were collected only from eight building construction projects in India.

Practical implications

It is feasible to adopt multi-objective optimization in practical construction projects using time, cost and quality as the objectives; Pareto surfaces help to quantify relationships among time, cost and quality. It is shown that cost can be reduced by increasing the duration, and quality can be improved only by increasing the cost.

Originality/value

The use of different activity execution modes compiled from multiple projects in optimization is illustrated, and good compromise solutions for the multi-mode resource-constrained project scheduling problems using multi-objective optimization are identified.

1 – 2 of 2