Search results

1 – 2 of 2
To view the access options for this content please click here
Article
Publication date: 7 March 2016

Marian Alexander Dietzel

Recent research has found significant relationships between internet search volume and real estate markets. This paper aims to examine whether Google search volume data…

Abstract

Purpose

Recent research has found significant relationships between internet search volume and real estate markets. This paper aims to examine whether Google search volume data can serve as a leading sentiment indicator and are able to predict turning points in the US housing market. One of the main objectives is to find a model based on internet search interest that generates reliable real-time forecasts.

Design/methodology/approach

Starting from seven individual real-estate-related Google search volume indices, a multivariate probit model is derived by following a selection procedure. The best model is then tested for its in- and out-of-sample forecasting ability.

Findings

The results show that the model predicts the direction of monthly price changes correctly, with over 89 per cent in-sample and just above 88 per cent in one to four-month out-of-sample forecasts. The out-of-sample tests demonstrate that although the Google model is not always accurate in terms of timing, the signals are always correct when it comes to foreseeing an upcoming turning point. Thus, as signals are generated up to six months early, it functions as a satisfactory and timely indicator of future house price changes.

Practical implications

The results suggest that Google data can serve as an early market indicator and that the application of this data set in binary forecasting models can produce useful predictions of changes in upward and downward movements of US house prices, as measured by the Case–Shiller 20-City House Price Index. This implies that real estate forecasters, economists and policymakers should consider incorporating this free and very current data set into their market forecasts or when performing plausibility checks for future investment decisions.

Originality/value

This is the first paper to apply Google search query data as a sentiment indicator in binary forecasting models to predict turning points in the housing market.

Details

International Journal of Housing Markets and Analysis, vol. 9 no. 1
Type: Research Article
ISSN: 1753-8270

Keywords

To view the access options for this content please click here
Article
Publication date: 26 August 2014

Marian Alexander Dietzel, Nicole Braun and Wolfgang Schäfers

The purpose of this paper is to examine internet search query data provided by “Google Trends”, with respect to its ability to serve as a sentiment indicator and improve…

Downloads
1829

Abstract

Purpose

The purpose of this paper is to examine internet search query data provided by “Google Trends”, with respect to its ability to serve as a sentiment indicator and improve commercial real estate forecasting models for transactions and price indices.

Design/methodology/approach

This paper examines internet search query data provided by “Google Trends”, with respect to its ability to serve as a sentiment indicator and improve commercial real estate forecasting models for transactions and price indices.

Findings

The empirical results show that all models augmented with Google data, combining both macro and search data, significantly outperform baseline models which abandon internet search data. Models based on Google data alone, outperform the baseline models in all cases. The models achieve a reduction over the baseline models of the mean squared forecasting error for transactions and prices of up to 35 and 54 per cent, respectively.

Practical implications

The results suggest that Google data can serve as an early market indicator. The findings of this study suggest that the inclusion of Google search data in forecasting models can improve forecast accuracy significantly. This implies that commercial real estate forecasters should consider incorporating this free and timely data set into their market forecasts or when performing plausibility checks for future investment decisions.

Originality/value

This is the first paper applying Google search query data to the commercial real estate sector.

Details

Journal of Property Investment & Finance, vol. 32 no. 6
Type: Research Article
ISSN: 1463-578X

Keywords

1 – 2 of 2