Search results

1 – 5 of 5
Article
Publication date: 7 November 2016

Marcin Lefik and Zbigniew Gmyrek

Estimating the punching process’s impact on the operating parameters of an electrical motor is a special problem especially in the case of fractional power motors. The purpose of…

Abstract

Purpose

Estimating the punching process’s impact on the operating parameters of an electrical motor is a special problem especially in the case of fractional power motors. The purpose of this paper is to discuss a method of numerical modelling that is useful for this case.

Design/methodology/approach

The proposed multi-physical FEM approach is based on using professional software in the process of modelling and determining the operating parameters of a low power motor. The basic elements of the approach are built FEM models for which the parameters characterising the damaged portions of the magnetic material were determined. The material properties of this zone were determined both by measurement and by a new analytical approach described in this paper.

Findings

The paper formulates the impact of punching on the operating parameters of a low power motor. Moreover, it formulates the analytical algorithm for the estimation of properties of material in damaged zones.

Research limitations/implications

Experimental verification will still be needed to check the model’s accuracy and applicability to various magnetic materials.

Practical implications

The paper provides an easy approach enabling the calculation of motor operating parameters and a simple and useful algorithm to estimate magnetic material properties in the damaged zone.

Originality/value

The analytical algorithm, as presented here, in conjunction with the measurement results is useful and applicable to estimating the magnetic material properties, which form the basis for accurate FEM calculation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 January 2019

Marcin Lefik, Krzysztof Komeza, Ewa Napieralska-Juszczak, Daniel Roger and Piotr Andrzej Napieralski

The purpose of this paper is to present a comparison between reluctance synchronous machine-enabling work at high internal temperature (HT° machine) with laminated and solid rotor.

114

Abstract

Purpose

The purpose of this paper is to present a comparison between reluctance synchronous machine-enabling work at high internal temperature (HT° machine) with laminated and solid rotor.

Design/methodology/approach

To obtain heat sources for the thermal model, calculations of the electromagnetic field were made using the Opera 3D program including effect of rotation and the resulting eddy current losses. To analyse the thermal phenomenon, the 3D coupled thermal-fluid (CFD) model is used.

Findings

The presented results show clearly that laminated construction is much better from a point of view of efficiency and temperature. However, solid construction can be interesting for high speed machines due to their mechanical robustness.

Research limitations/implications

The main problem, despite the use of parallel calculations, is the long calculation time.

Practical implications

The obtained simulation and experimental results show the possibility of building a machine operating at a much higher ambient temperature than it was previously produced for example in the vicinity of the aircraft turbines.

Originality/value

The paper presents the application of fully three-dimensional coupled electromagnetic and thermal analysis of new machine constructions designed for elevated temperature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 July 2010

Krzysztof Komęza, Xosé M. López‐Fernández and Marcin Lefik

The purpose of this paper is to present the plan to develop the known algorithm for thermal and electromagnetic coupled problem calculation. This is used for three‐phase induction…

Abstract

Purpose

The purpose of this paper is to present the plan to develop the known algorithm for thermal and electromagnetic coupled problem calculation. This is used for three‐phase induction motor (IM) on nominal load. An additional purpose is verification empiric expressions of the heat transfer and equivalent thermal conductivity coefficients for external faces and air zones in analysed motor taken from literature.

Design/methodology/approach

The numerical investigations proposed in this paper are based on 3D finite element models for thermal and electromagnetic fields analysis. Electromagnetic analysis includes iron core losses. It gives additional heat sources to thermal analysis. Heat transfer and equivalent thermal conductivity coefficients are assessed applying empiric expressions. Thermal model is experimentally validated.

Findings

The results of calculations and experimental test shows that heat transfer coefficient for external zones taken from literature does not guarantee the equal accuracy of the distribution of the temperature in all volume of the machine.

Research limitations/implications

Taken from literature, empirical equations do not give correct values of heat transfer coefficient. It states ways to go further in the evaluation of heat transfer coefficients.

Originality/value

This paper presents modelling methodology of 3D transient thermal field coupled with electromagnetic field applied in three‐phase IM at rated load conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2015

Marcin Lefik

The purpose of this paper is to include thermal analysis in the design process of permanent magnet synchronous motor (PMSM). The additional objective is a comparison of PMSM with…

376

Abstract

Purpose

The purpose of this paper is to include thermal analysis in the design process of permanent magnet synchronous motor (PMSM). The additional objective is a comparison of PMSM with induction motor (IM) in terms of thermal phenomena.

Design/methodology/approach

Numerical investigation using commercial software MotorSolve was performed. Parameterized models of PMSM and IM were used. Calculations of motor parameters and temperature distribution were made using Finite Element Method.

Findings

The results of the calculations show that thermal calculations should be included in the design process because the maximum permissible operating temperature of permanent magnets should not be exceeded. A comparative analysis of PMSM and IM shows that the PMSM has better parameters than the IM which was used as a base of the PMSM construction.

Research limitations/implications

Computational models should be verified experimentally on a physical model or by using more complex numerical models. In the case of IM thermal calculations, a method of air speed calculation should be proposed. Air speed is a parameter that is necessary in thermal analysis of IM, but during the design process it is unknown.

Originality/value

This paper presents modelling methodology of 3D transient thermal field coupled with electromagnetic field applied in a three-phase IM at rated load conditions. This paper presents a design strategy which includes thermal analysis of the designed PMSM. Moreover, the paper shows a comparison between PMSM and IM indicating advantages of PMSM over IM.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 July 2008

Marcin Lefik and Krzysztof Komęza

This paper aims to present the plan to develop the known algorithm for thermal and electromagnetic coupled problem calculation. This is used for a one‐phase induction motor with…

Abstract

Purpose

This paper aims to present the plan to develop the known algorithm for thermal and electromagnetic coupled problem calculation. This is used for a one‐phase induction motor with locked rotor for nominal and lowered voltage excitation values. It also aims to prepare a calculating method for the average heat transfer coefficient for natural convection from the induction motor housing external face.

Design/methodology/approach

The numerical investigations proposed are based on 3D finite element models for thermal and electromagnetic fields analysis and 3D volume element model for average heat transfer coefficient calculations. The thermal model is experimentally validated.

Findings

The paper provides a numerical method to calculate average heat transfer coefficient for the induction motor housing external faces. This coefficient is shown as a temperature function. Temperature variations in the various parts of the induction motor with locked rotor are calculated. The calculation results are compared with the measurement results.

Research limitations/implications

The average heat transfer coefficient is calculated for a limited range of temperature and for the natural convection case. Electromagnetic field analysis does not include losses in the motor core. These losses could be included in the thermal and electromagnetic fields coupled calculation problem as an additional heat source for the thermal field.

Originality/value

The paper presents a 3D transient thermal field and electromagnetic field coupled problem and proposes a method for calculating the average heat transfer coefficient of natural convection from the housing external face of the induction motor with a locked rotor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 5 of 5