Search results

1 – 10 of 39
Open Access
Article
Publication date: 2 February 2023

Cheng Wang, Haibo Xie and Huayong Yang

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor…

Abstract

Purpose

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor path-following accuracy for the path planning of hyper-redundant snake-like manipulator.

Design/methodology/approach

When a desired path is given, new configuration of the snake-like manipulator is obtained through a geometrical approach, then the joints are repositioned through iterations until all the rotation angles satisfy the imposed joint limits. Finally, a new arrangement is obtained through the analytic solution of the inverse kinematics of hyper-redundant manipulator. Finally, simulations and experiments are carried out to analyze the performance of the proposed path-following method.

Findings

Simulation results show that the average computation time is 0.1 ms per step for a hyper-redundant manipulator with 12 degrees of freedom, and the deviation in tip position can be kept below 0.02 mm. Experiments show that all the rotation angles are within joint limits.

Research limitations/implications

Currently , the manipulator is working in open-loop, the elasticity of the driving cable will cause positioning error. In future, close-loop control based on real-time attitude detection will be used in in combination with the path-following method to achieve high-precision trajectory tracking.

Originality/value

Through a series of iterative processes, the proposed method can make the manipulator approach the desired path as much as possible within the joint constraints with high precision and less computation time.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 1 September 2022

Asia Khatun, Ratan Ghosh and Sadman Kabir

This study aims to determine the number of companies involved in earnings manipulation. Additionally, this study has empirically investigated the common manipulation items among…

2686

Abstract

Purpose

This study aims to determine the number of companies involved in earnings manipulation. Additionally, this study has empirically investigated the common manipulation items among the companies.

Design/methodology/approach

Bangladesh's listed commercial banks are selected as a sample for this study, and financial data from 2009 to 2018 were collected. The likely and nonlikely manipulator Beneish model (1999) divides the sample into two groups. Based on the M-score of the model, the banks are put into two groups. To identify the most influential variables, an independent sample t-test was done with the help of Statistical Package for Social Sciences (SPSS).

Findings

The findings show that banks in Bangladesh have an unstable trend in making manipulated financial reports. Results of the t-test reveal that overstating revenues, increasing intangible assets, lessening cost and accruals are the most appealing items for preparing a fraudulent financial report. The findings of this research work will help the investors take the right decision having the idea of manipulation in the banking sector of Bangladesh.

Originality/value

In the presence of many irregularities in the banking sector Bangladesh, very few studies have been carried out in forensic accounting and fraudulent financial reporting practices. Much research has focused on earnings management techniques. This research specifically focuses on identifying earnings manipulation in financial statements for micro-level variables like accounting accruals, intangible assets, etc. This will help policy-makers and financial statement readers to be proactive while reading financial statements and taking any investment decision.

Details

Arab Gulf Journal of Scientific Research, vol. 40 no. 3
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 30 July 2021

Lorenzo Fiorineschi, Luca Pugi and Federico Rotini

The purpose of this paper is to present an alternative solution for press-fit technology processes, which could improve the precision of the positioning movements and the…

Abstract

Purpose

The purpose of this paper is to present an alternative solution for press-fit technology processes, which could improve the precision of the positioning movements and the stiffness of the structural elements.

Design/methodology/approach

A concept is presented and the related kinematics is described. Then, preliminary embodiment evaluations have been performed in terms of kinematics, force control and load distribution on the main structural elements.

Findings

Thanks to the additional leg, the proposed solution allows a preload that is capable of compensating the backlash of joints. The particular structure with four extendible legs and eight cardan joints ensures the parallelism between the ground and the plate holding the end effector, without any need of additional controls. However, it implies that the legs are not subjected to pure tension–compression stresses.

Research limitations/implications

This work is focused on the conceptual phase of the design process, with only preliminary embodiment analysis that paves the way for subsequent and more detailed design steps. Especially concerning the actual stiffness of the system, comprehensive evaluations could be performed only after the identification of the particular parts/devices used to implement the main functional elements.

Originality/value

To the best of the authors’ knowledge, this is the first research work that comprehensively describes and analyzes the considered kinematics, within a real industrial application context.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 7 June 2021

Changyang Li, Huapeng Wu, Harri Eskelinen and Haibiao Ji

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in…

Abstract

Purpose

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in fusion reactor. Detailed mechanical design of the robot is presented and both the kinematic and dynamic behaviors are studied.

Design/methodology/approach

First, the model of the mobile parallel robot was created in computer-aided design (CAD) software, then the simulation and optimization of the robot were completed to meet the design requirements. Then the robot was manufactured and assembled. Finally, the machining and tungsten inert gas (TIG) welding tests were performed for validation.

Findings

Currently, the implementation of the robot system has been successfully carried out in the laboratory. The excellent performance has indicated that the robot’s mechanical and software designs are suitable for the given tasks. The quality and accuracy of welding and machining has reached the requirements.

Originality/value

This mobile parallel industrial robot is particularly used in fusion reactor. Furthermore, the structure of the mobile parallel robot can be optimized for different applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 7 August 2017

Chunlin Zhou, Huifeng Wu, Xiang Xu, Yong Liu, Qi Zhu and Shuwen Pan

The purpose of this paper is to propose a robotic system for percutaneous surgery. The key component in the system, a robotic arm that can manipulate a puncture needle is…

4035

Abstract

Purpose

The purpose of this paper is to propose a robotic system for percutaneous surgery. The key component in the system, a robotic arm that can manipulate a puncture needle is presented. The mechanical design, the motion control and the force control method of the robotic arm are discussed in the paper.

Design/methodology/approach

The arm with an arc mechanism placed on a 3D Cartesian stage is developed as a puncture needle manipulator to locate the position of the needle tip, tune the needle’s posture and actuate the puncture motion under the visual guidance of two orthogonal X-ray images of a patient by a surgeon. A focusing method by using two laser spots is proposed to automatically move the needle tip to a surgery entry point on the skin. A dynamics model is developed to control the position of the needle mechanism and an explicit force control strategy is utilized to perform the needle insertion.

Findings

With the surgical system, a surgeon can easily perform puncture operation by taking two orthogonal real-time X-ray images as a visual feedback and accurately navigating the needle insertion. The laser-guided focusing method is efficient in placement of the needle tip. The explicit force control strategy is proved to be effective for holding constant and stable puncture force in experiments.

Originality/value

The robotic arm has an advantage in easy redirection of the needle because the rotation and the translation are decoupled in the mechanism. By adopting simple laser pens and a well-developed kinematics model, the system can handle the entry point, locating task automatically. The focusing method and the force control method proposed in the paper are useful for the present system and could be intuitive for similar surgical robots.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 22 July 2021

David Dapice

The purpose of this paper is to explain why Vietnam has been charged as a currency manipulator by the USA, and why those charges are less than conclusive, as of May 2021, no…

8345

Abstract

Purpose

The purpose of this paper is to explain why Vietnam has been charged as a currency manipulator by the USA, and why those charges are less than conclusive, as of May 2021, no immediate tariffs were imposed.

Design/methodology/approach

A comparative approach is applied using economic data on trade balances, inflation, exchange rates, and foreign exchange reserves from Vietnam, other Asian nations, and the USA. Currency regime theories are briefly reviewed, and USA. Treasury statements about Vietnam’s currency are referred to, which then are analyzed. Further explanations are based on the context of the economic situation and bilateral relations.

Findings

Since 2010, Vietnam’s currency has appreciated, and since 2015, the government has kept the Vietnamese dong (VND) stable in real terms against the dollar. The sharp improvement in Vietnam’s bilateral and overall trade balance is due largely to rising labor costs in China and trade frictions between the USA and China. The resulting US tariffs on China’s exports redirected Foreign Direct Investment (FDI) exports to Vietnam. Even with these recent trade surpluses, Vietnam’s ratio of foreign exchange reserves to imports is lower than that of many other Asian nations. The USA’s recent decision not to impose punitive tariffs on Vietnam’s exports but continue to monitor and hold discussions reflects the reduced priority the new US administration puts on bilateral trade balances and the recognition that Vietnam is negotiating seriously and has significant value in a regional context.

Originality/value

The paper provides a comprehensive understanding from both theoretical and practical perspectives of the recent event. The implications are meaningful for the adjustment of national monetary strategy to avoid a similar situation in the future.

Details

Fulbright Review of Economics and Policy, vol. 1 no. 1
Type: Research Article
ISSN: 2635-0173

Keywords

Open Access
Article
Publication date: 11 December 2019

Rasha Hassan and Yasser Ibrahim

Media has always been used as a key manipulator of public agendas, political beliefs and individuals’ attitudes. The purpose of this study is to investigate the impact of three…

1308

Abstract

Purpose

Media has always been used as a key manipulator of public agendas, political beliefs and individuals’ attitudes. The purpose of this study is to investigate the impact of three adaptive media strategies on the pattern and dynamics of potential crowds.

Design/methodology/approach

An agent-based approach is used to simulate the three adaptive media strategies on the pattern and dynamics of potential crowds. During the experiments, the media broadcast is intensified to gather momentum for crowd movements or is lessened to maintain the budget.

Findings

The results show that a slight change in the media management strategy could lead to a radical different impact on the crowd dynamics. The results also show that a quite smart media strategy could outperform a strategy with an unlimited budget. Finally, the structure of the society shows a significant influence on the crowd dynamics than it could be inferred.

Originality/value

The model presents an explanatory toolkit for the crowd complexity. The results provide deep insights into the crowd formation and a basis for understanding the influence of media and the impact of its strategies on the crowd dynamics.

Details

Journal of Humanities and Applied Social Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2632-279X

Keywords

Open Access
Article
Publication date: 4 December 2020

Fangli Mou and Dan Wu

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further…

1144

Abstract

Purpose

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further applications and human–robot interaction in an unstructured open environment, fast and accurate tracking and strong disturbance rejection ability are required. However, utilizing a conventional controller can make it difficult for the robot to meet these demands, and when a robot is required to perform at a high-speed and large range of motion, conventional controllers may not perform effectively or even lead to the instability.

Design/methodology/approach

The main idea is to develop the control law by combining the SMC feedback with the ADRC control architecture to improve the robustness and control quality of a conventional SMC controller. The problem is formulated and solved in the framework of ADRC. For better estimation and control performance, a generalized proportional integral observer (GPIO) technique is employed to estimate and compensate for unmodeled dynamics and other unknown time-varying disturbances. And benefiting from the usage of GPIO, a new SMC law can be designed by synthesizing the estimation and its history.

Findings

The employed methodology introduced a significant improvement in handling the uncertainties of the system parameters without compromising the nominal system control quality and intuitiveness of the conventional ADRC design. First, the proposed method combines the advantages of the ADRC and SMC method, which achieved the best tracking performance among these controllers. Second, the proposed controller is sufficiently robust to various disturbances and results in smaller tracking errors. Third, the proposed control method is insensitive to control parameters which indicates a good application potential.

Originality/value

High-performance robot tracking control is the basis for further robot applications in open environments and human–robot interfaces, which require high tracking accuracy and strong disturbance rejection. However, both the varied dynamics of the system and rapidly changing nonlinear coupling characteristic significantly increase the control difficulty. The proposed method gives a new replacement of PID controller in robot systems, which does not require an accurate dynamic system model, is insensitive to control parameters and can perform promisingly for response rapidity and steady-state accuracy, as well as in the presence of strong unknown disturbances.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 24 October 2022

Babak Lotfi and Bengt Ake Sunden

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice…

1159

Abstract

Purpose

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice structure topology (simple cubic, body-centered cubic, z-reinforced body-centered cubic [BCCZ], face-centered cubic and z-reinforced face-centered cubic [FCCZ] lattice structures) and porosity value ( ) – on the thermal-hydraulic characteristics of the novel trussed fin-and-elliptical tube heat exchanger (FETHX), which has led to a deeper understanding of the superior heat transfer enhancement ability of the PCL structure.

Design/methodology/approach

A three-dimensional computational fluid dynamics (CFD) model is proposed in this paper to provide better understanding of the fluid flow and heat transfer behavior of the PCL structures in the trussed FETHXs associated with different structure topologies and high-porosities. The flow governing equations of the trussed FETHX are solved by the CFD software ANSYS CFX® and use the Menter SST turbulence model to accurately predict flow characteristics in the fluid flow region.

Findings

The thermal-hydraulic performance benchmarks analysis – such as field synergy performance and performance evaluation criteria – conducted during this research successfully identified demonstrates that if the high porosity of all PCL structures decrease to 92%, the best thermal-hydraulic performance is provided. Overall, according to the obtained outcomes, the trussed FETHX with the advantages of using BCCZ lattice structure at 92% porosity presents good thermal-hydraulic performance enhancement among all the investigated PCL structures.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first in the literature that provides thorough thermal-hydraulic characteristics of a novel trussed FETHX with high-porosity PCL structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 18 January 2021

Hongxing Wang, LianZheng Ge, Ruifeng Li, Yunfeng Gao and Chuqing Cao

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research…

1050

Abstract

Purpose

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling.

Design/methodology/approach

The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized.

Findings

Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process.

Research limitations/implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Practical implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Social implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Originality/value

Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 39