Search results

1 – 10 of 10
Article
Publication date: 18 April 2017

Sandeep W. Dahake, Abhaykumar M. Kuthe, Jitendra Chawla and Mahesh B. Mawale

The purpose of this paper is to develop a workflow for design and fabrication of customized surgical guides (CSGs) for placement of the bidirectional extraoral distraction

188

Abstract

Purpose

The purpose of this paper is to develop a workflow for design and fabrication of customized surgical guides (CSGs) for placement of the bidirectional extraoral distraction instruments (EDIs) in bilateral mandibular distraction osteogenesis (MDO) surgery to treat the bilateral temporomandibular joint ankylosis with zero mouth opening.

Design/methodology/approach

The comprehensive workflow consists of six steps: medical imaging; virtual surgical planning (VSP); computer aided design; rapid prototyping (RP); functional testing of CSGs and mock surgery; and clinical application. Fused deposition modeling, an RP process was used to fabricate CSGs in acrylonitrile butadiene styrene material. Finally, mandibular reconstruction with MDO was performed successfully using RP-assisted CSGs.

Findings

Design and development of CSGs prior to the actual MDO surgery improves accuracy, reduces operation time and decreases patient morbidity, hence improving the quality of surgery. Manufacturing of CSG is easy using RP to transfer VSP into the actual surgery.

Originality/value

This study describes an RP-assisted CSGs fabrication for exact finding of both; osteotomy site and drilling location to fix EDI’s pins accurately in the mandible; for accurate osteotomy and placement of the bidirectional EDIs in MDO surgery to achieve accurate distraction.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 September 2009

Richard Bibb, Dominic Eggbeer, Peter Evans, Alan Bocca and Adrian Sugar

The computer‐aided design (CAD) and manufacture of custom‐fitting surgical guides have been shown to provide an accurate means of transferring computer‐aided planning to surgery…

1794

Abstract

Purpose

The computer‐aided design (CAD) and manufacture of custom‐fitting surgical guides have been shown to provide an accurate means of transferring computer‐aided planning to surgery. To date guides have been produced using fragile materials via rapid prototyping techniques such as stereolithography (SLA), which typically require metal reinforcement to prevent damage from drill bits. The purpose of this paper is to report case studies which explore the application of selective laser melting (SLM) to the direct manufacture of stainless steel surgical guides. The aim is to ascertain whether the potential benefits of enhanced rigidity, increased wear resistance (negating reinforcement) and easier sterilisation by autoclave can be realised in practice.

Design/methodology/approach

A series of clinical case studies are undertaken utilising medical scan data, CAD and SLM. The material used is 316L stainless steel, an alloy typically used in medical and devices and surgical instruments. All treatments are planned in parallel with existing techniques and all guides are test fitted and assessed on SLA models of the patients' anatomy prior to surgery.

Findings

This paper describes the successful application of SLM to the production of stainless steel surgical guides in four different maxillofacial surgery case studies. The cases reported address two types of procedure, the placement of osseointegrated implants for prosthetic retention and Le Fort 1 osteotomies using internal distraction osteogenesis. The cases reported here have demonstrated that SLM is a viable process for the manufacture of custom‐fitting surgical guides.

Practical implications

The cases have identified that the effective design of osteotomy guides requires further development and refinement.

Originality/value

This paper represents the first reported applications of SLM technology to the direct manufacture of stainless steel custom‐fitting surgical guides. Four successful exemplar cases are described including guides for osteotomy as well as drilling. Practical considerations are presented along with suggestions for further development.

Details

Rapid Prototyping Journal, vol. 15 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2016

Sandeep W. Dahake, Abhaykumar M. Kuthe, Mahesh B. Mawale and Ashutosh D. Bagde

This paper aims to provide an overview of applications of medical rapid prototyping (MRP)-assisted customized surgical guides (CSGs) and shows the potential of this technology in…

Abstract

Purpose

This paper aims to provide an overview of applications of medical rapid prototyping (MRP)-assisted customized surgical guides (CSGs) and shows the potential of this technology in complex surgeries. This review paper also reports two case studies from open literature where MRP-assisted CSGs have been successfully used in complex surgeries.

Design/methodology/approach

Key publications from the past two decades have been reviewed.

Findings

This study concludes that the use of MRP-assisted CSGs improves the accuracy of surgery. Additionally, MRP-assisted CSGs make the surgery much faster, accurate and cheaper than any other technique. The outcome based on literature review and two case studies strongly suggested that MRP-assisted CSGs might become part of a standard protocol in the medical sector to operate the various complex surgeries, in the near future.

Practical implications

Advanced technologies like radiology, image processing, virtual surgical planning (VSP), computer-aided design (CAD) and MRP made it possible to fabricate the CSGs. MRP-assisted CSGs can easily transfer the VSP into the actual surgery.

Originality/value

This paper is beneficial to study the development and applications of MRP-assisted CSGs in complex surgeries.

Article
Publication date: 6 July 2015

Juan C. Vanegas-Acosta, V. Lancellotti and A.P.M. Zwamborn

Electric fields (EFs) are known to influence cell and tissue activity. This influence can be due to thermal or non-thermal effects. While the non-thermal effects are still matter…

Abstract

Purpose

Electric fields (EFs) are known to influence cell and tissue activity. This influence can be due to thermal or non-thermal effects. While the non-thermal effects are still matter of discussion, thermal effects might be detrimental for cell and tissue viability due to thermal damage, this fact being exploited by applications like hyperthermia and tissue ablation. The paper aims to discuss these issues.

Design/methodology/approach

In this work the authors investigate the influence of thermal damage in the consolidation of bone formation during electrostimulation (ES). The authors introduce a mathematical model describing the migration of osteoprogenitor cells, the thermal variation, the thermal damage accumulation and the formation of new bone matrix in an injury (fracture) site.

Findings

Numerical results are in agreement with experimental data and show that EFs more intense than 7.5 V/cm are detrimental for the viability of osteoprogenitor cells and the formation of new bone.

Originality/value

The model is suitable to conduct dosimetry studies in support of other different ES techniques aimed at improving bone and soft tissues repair.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 April 2014

Sushant Negi, Suresh Dhiman and Rajesh Kumar Sharma

This study aims to provide an overview of rapid prototyping (RP) and shows the potential of this technology in the field of medicine as reported in various journals and…

1825

Abstract

Purpose

This study aims to provide an overview of rapid prototyping (RP) and shows the potential of this technology in the field of medicine as reported in various journals and proceedings. This review article also reports three case studies from open literature where RP and associated technology have been successfully implemented in the medical field.

Design/methodology/approach

Key publications from the past two decades have been reviewed.

Findings

This study concludes that use of RP-built medical model facilitates the three-dimensional visualization of anatomical part, improves the quality of preoperative planning and assists in the selection of optimal surgical approach and prosthetic implants. Additionally, this technology makes the previously manual operations much faster, accurate and cheaper. The outcome based on literature review and three case studies strongly suggests that RP technology might become part of a standard protocol in the medical sector in the near future.

Originality/value

The article is beneficial to study the influence of RP and associated technology in the field of medicine.

Details

Rapid Prototyping Journal, vol. 20 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2001

Bal Sanghera, Satyajit Naique, Yannis Papaharilaou and Andrew Amis

Rapid prototype models are directly integrated into non‐engineering applications such as medicine. Medical models are used to plan complex procedures prior to surgery with…

2810

Abstract

Rapid prototype models are directly integrated into non‐engineering applications such as medicine. Medical models are used to plan complex procedures prior to surgery with potential to optimise patient treatment in the operating theatre. This paper presents results following a 12 month National Health Service Executive research project to assess the feasibility of using rapid prototype medical models. A total of 16 medical models were created. Nine anatomical sites were reconstructed from patient data acquired from five London hospitals. The purpose of the models is described and the commissioning surgeons as part of a questionnaire assessed their usefulness. Future developments are discussed and conclusions about the use of medical models are made.

Details

Rapid Prototyping Journal, vol. 7 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 October 2015

M. Fantini, F. De Crescenzio, L. Ciocca and F. Persiani

The purpose of this paper is to describe two different approaches for manufacturing pre-formed titanium meshes to assist prosthetically guided bone regeneration of atrophic…

Abstract

Purpose

The purpose of this paper is to describe two different approaches for manufacturing pre-formed titanium meshes to assist prosthetically guided bone regeneration of atrophic maxillary arches. Both methods are based on the use of additive manufacturing (AM) technologies and aim to limit at the minimal intervention the bone reconstructive surgery by virtual planning the surgical intervention for dental implants placement.

Design/methodology/approach

Two patients with atrophic maxillary arches were scheduled for bone augmentation using pre-formed titanium mesh with particulate autogenous bone graft and alloplastic material. The complete workflow consists of four steps: three-dimensional (3D) acquisition of medical images and virtual planning, 3D modelling and design of the bone augmentation volume, manufacturing of biomodels and pre-formed meshes, clinical procedure and follow up. For what concerns the AM, fused deposition modelling (FDM) and direct metal laser sintering (DMLS) were used.

Findings

For both patients, a post-operative control CT examination was scheduled to evaluate the progression of the regenerative process and verify the availability of an adequate amount of bone before the surgical intervention for dental implants placement. In both cases, the regenerated bone was sufficient to fix the implants in the planned position, improving the intervention quality and reducing the intervention time during surgery.

Originality/value

A comparison between two novel methods, involving AM technologies are presented as viable and reproducible methods to assist the correct bone augmentation of atrophic patients, prior to implant placement for the final implant supported prosthetic rehabilitation.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 June 2021

André Luiz Jardini, Éder Sócrates Najar Lopes, Laís Pellizzer Gabriel, Davi Calderoni, Rubens Maciel Filho and Paulo Kharmandayan

This study aims to assess the design, manufacturing and surgical implantation of three-dimensional (3D) customized implants, including surgical preoperative planning, surgery and…

Abstract

Purpose

This study aims to assess the design, manufacturing and surgical implantation of three-dimensional (3D) customized implants, including surgical preoperative planning, surgery and postoperative results, for cranioplasty along with zygomatic and orbital floor implants using additive manufacturing (AM) technics for a 23-year-old female who suffered from severe craniomaxillofacial trauma.

Design/methodology/approach

The skull biomodel was produced in polyamide while implants were made of Ti-6Al-4V alloy by AM.

Findings

The method enabled perfectly fitting implants and anatomical conformance with the craniomaxillofacial defect, providing complete healing for the patient. Surgical planning using a customized 3D polyamide biomodel was effective. This proved to be a powerful tool for medical planning and manufacturing of customized implants, as complete healing and good craniofacial aesthetic results were observed.

Originality/value

Satisfactory surgical procedures, regarding surgery time reduction and good craniofacial aesthetic results, were achieved. Furthermore, the 3D titanium customized implants represented a favorable alternative for the repair of craniomaxillofacial defects.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 September 2018

Diana Popescu, Dan Laptoiu, Rodica Marinescu and Iozefina Botezatu

This paper aims to fill a research gap by presenting design and 3D printing guidelines and considerations which apply to the development process of patient-specific osteotomy…

Abstract

Purpose

This paper aims to fill a research gap by presenting design and 3D printing guidelines and considerations which apply to the development process of patient-specific osteotomy guides for orthopaedic surgery.

Design/methodology/approach

Analysis of specific constraints related to patient-specific surgical guides design and 3D printing, lessons learned during the development process of osteotomy guides for orthopaedic surgery, literature review of recent studies in the field and data gathered from questioning a group of surgeons for capturing their preferences in terms of surgical guides design corresponding to precise functionality (materializing cutting trajectories, ensuring unique positioning and stable fixation during surgery), were all used to extract design recommendations.

Findings

General design rules for patient-specific osteotomy guides were inferred from examining each step of the design process applied in several case studies in relation to how these guides should be designed to fulfill medical and manufacturing (fused deposition modelling process) constraints. Literature was also investigated for finding other information than the simple reference that the surgical guide is modelled as negative of the bone. It was noticed that literature is focussed more on presenting and discussing medical issues and on assessing surgical outcomes, but hardly at all on guides’ design and design for additive manufacturing aspects. Moreover, surgeons’ opinion was investigated to collect data on different design aspects, as well as interest and willingness to use such 3D-printed surgical guides in training and surgery.

Practical implications

The study contains useful rules and recommendations for engineers involved in designing and 3D printing patient-specific osteotomy guides.

Originality/value

A synergetic approach to identify general rules and recommendations for the patient-specific surgical guides design is presented. Specific constraints are identified and analysed using three case studies of wrist, femur and foot osteotomies. Recent literature is reviewed and surgeons’ opinion is investigated.

Details

Rapid Prototyping Journal, vol. 24 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 May 2009

Abbas Azari and Sakineh Nikzad

The goal of rapid mechanical prototyping is to be able to quickly fabricate complex‐shaped, 3D parts directly from computer‐aided design models. The key idea of this novel…

7490

Abstract

Purpose

The goal of rapid mechanical prototyping is to be able to quickly fabricate complex‐shaped, 3D parts directly from computer‐aided design models. The key idea of this novel technology is based upon decomposition of 3D computer models data into thin cross‐sectional layers, followed by physically forming the layers and stacking them up; “layer by layer technique.” This new method of modeling has raised many attentions in dentistry especially in the field of surgery and implantology. The purpose of this review study is to represent the historical development and various methods currently used for building dental appliances. It is also aimed to show the many benefits which can be achieved by using this new technology in various branches of dentistry.

Design/methodology/approach

The major existing resources, including unpublished data on the internet, were considered.

Findings

Although, creating 3D objects in a layered fashion is an idea almost as old as human civilization but, this technology has only recently been employed to build 3D complex models in dentistry. It seems that in near future many other methods will develop which could change traditional dental practices. It is advisable to include more unit hours in dental curriculums to acquaint dental students with the many benefits of this novel technology.

Originality/value

It is hard to believe that the routine dental techniques were affected by revolutionary concepts originally theorized by engineering methods. It is a reality that in future, most of the restorative disciplines will be fully revised and the computer methods be evolved to an extent where dentistry can be performed by computer‐assisted methods with optimum safety, simplicity, and reliability.

Details

Rapid Prototyping Journal, vol. 15 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 10