Search results

1 – 5 of 5
Open Access
Article
Publication date: 8 April 2024

Anita Meena

This paper aims to examine and compare the export performance and competitiveness of Indian and Chinese textile and clothing industry in post-multifibre arrangement (MFA) era.

Abstract

Purpose

This paper aims to examine and compare the export performance and competitiveness of Indian and Chinese textile and clothing industry in post-multifibre arrangement (MFA) era.

Design/methodology/approach

Balassa’s revealed comparative advantage Index is used to assess the competitiveness of Indian and Chinese textile and clothing exports.

Findings

The results indicate that China’s textiles and garments sector holds a greater proportion of the global market compared with India. India has a robust comparative advantage in silk, carpets and cotton post-MFA. Vegetable textile fibers, paper yarn and woven fabrics of paper yarn are also competitive. China had a strong comparative advantage in silk and fabrics; special woven fabrics, tafted textile fabrics, lace, tapestries, trimmings and embroidery in 2005. China also recorded comparative advantage in silk, man-made filaments: strip and the like of man-made textile materials, fabrics; special woven fabrics, tafted textile fabrics, lace, tapestries, trimmings and embroidery and fabrics; knitted or crocheted in 2021.

Research limitations/implications

This study’s results and recommendations could assist the Indian and Chinese Governments develop policies to upgrade their garment industries.

Originality/value

Though vast literature reviews are available for textile and apparel export performance in India and China separately, there are few studies on comparisons. This study is a significant attempt to evaluate India and China’s competitiveness in the global market.

Details

Vilakshan - XIMB Journal of Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0973-1954

Keywords

Open Access
Article
Publication date: 29 May 2019

Marjo Määttänen, Sari Asikainen, Taina Kamppuri, Elina Ilen, Kirsi Niinimäki, Marjaana Tanttu and Ali Harlin

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while…

5461

Abstract

Purpose

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while recycling textile fibre. More knowledge is needed for colour management in a circular economy approach.

Design/methodology/approach

The research included the use of different dye types in a cotton dyeing process, the process for decolourizing and the results. Two reactive dyes, two direct dyes and one vat dye were used in the study. Four chemical treatment sequences were used to evaluate colour removal from the dyed cotton fabrics, namely, HCE-A, HCE-P-A, HCE-Z-P-A and HCE-Y-A.

Findings

The objective was to evaluate how different chemical refining sequences remove colour from direct, reactive and vat dyed cotton fabrics, and how they influence the specific cellulose properties. Dyeing methods and the used refining sequences influence the degree of colour removal. The highest achieved final brightness of refined cotton materials were between 71 and 91 per cent ISO brightness, depending on the dyeing method used.

Research limitations/implications

Only cotton fibre and three different colour types were tested.

Practical implications

With cotton waste, it appears to be easier to remove the colour than to retain it, especially if the textile contains polyester residues, which are desired to be removed in the textile refining stage.

Originality/value

Colour management in the CE context is an important new track to study in the context of the increasing amount of textile waste used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 23 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 30 April 2014

Mohammad Masudur Rahman and Cheong Inkyo

The European Union (EU) has notified its revised Generalized System of Preference (GSP) on 31 October, 2012 which will come into effect from 1 January, 2014. The EU is also in the…

Abstract

The European Union (EU) has notified its revised Generalized System of Preference (GSP) on 31 October, 2012 which will come into effect from 1 January, 2014. The EU is also in the process of, or contemplating, to sign Free Trade Agreements (FTAs) with many developing countries. Recently, EU has officially announced initiation of FTA negotiations with USA. Such preferential tariff arrangements could lead to significant erosion of preferences enjoyed currently by the Least Developed Countries (LDCs). In this backdrop, the main objective of the present study is to investigate the economic impacts originating from preference erosion in the EU market which could potentially affect LDCs in general, Bangladesh in particular. In this context, a dynamic computable general equilibrium (CGE) analysis has been developed by using the Global Trade Analysis Project (GTAP) model and database to explore the aggregate impact of the preferential erosion as well as sectoral implications for which different partial equilibrium analyses were used. The analysis evince that if the EU eliminates all tariffs for Pakistan, India and Vietnam, Bangladesh's real GDP could decrease by 0.27 percent whilst welfare loss could be to the tune of US$ 54 million. Total exports to the EU will be reduced by 0.18 percent; consequently, Bangladesh’s terms of trade and exports of textiles and clothing could be fall by about 1 percent. The product level disaggregated analysis using RCA and unit price of major items also indicate that a number of products including textiles and clothing will be confronted with formidable market access difficulties in the EU.

Details

Journal of International Logistics and Trade, vol. 12 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 16 December 2022

Uchenna Luvia Ezeamaku, Chinyere Ezekannagha, Ochiagha I. Eze, Nkiru Odimegwu, Angela Nwakaudu, Amarachukwu Okafor, Innocent Ekuma and Okechukwu Dominic Onukwuli

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava…

745

Abstract

Purpose

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava starch) was studied.

Design/methodology/approach

The PALF was exposed to sodium hydroxide (NaOH) treatment in varying concentrations of 2.0, 3.7, 4.5 and 5.5g prior to the fiber treatment with KMnO4. The treated and untreated PALFs were reinforced with tapioca-based bio resin. Subsequently, they were subjected to Fourier transform infrared (FTIR) and tensile test analysis.

Findings

The FTIR analysis of untreated PALF revealed the presence of O-H stretch, N-H stretch, C=O stretch, C=O stretch and H-C-H bond. The tensile test result confirmed the highest tensile strength of 35N from fiber that was reinforced with 32.5g of cassava starch and treated with 1.1g of KMnO4. In comparison, the lowest tensile strength of 15N was recorded for fiber reinforced with 32.5g of cassava starch without KMnO4 treatment.

Originality/value

Based on the results, it could be deduced that despite the enhancement of bioresin (cassava starch) towards strength-impacting on the fibers, KMnO4 treatment on PALF is very vital for improved tensile strength of the fiber when compared to untreated fibers. Hence, KMnO4 treatment on alkali-treated natural fibers preceding reinforcement is imperative for bio-based fibers.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 3
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 10 October 2018

Chander Prakash, Sunpreet Singh, Ilenia Farina, Fernando Fraternali and Luciano Feo

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently…

1129

Abstract

Purpose

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently, biodegradable material possessing such superior properties has been the focus with an aim of revolutionizing implant’s design, material and performance. This paper aims to present a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by mechanical alloying and spark plasma sintering (MA-SPS) technique.

Design/methodology/approach

This paper presents a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by MA-SPS technique. As the key alloying elements, HA powders with an appropriate proportion weight 5 and 10 are mixed with the base elemental magnesium (Mg) particles to form the composites of potentially variable porosity and mechanical property. The aim is to investigate the performance of the synthesized composites of Mg-3Si together with HA in terms of mechanical integrity hardness and Young’s moduli corrosion resistance and in-vitro bioactivity.

Findings

Mechanical and surface characterization results indicate that alloying of Si leads to the formation of fine Mg2 Si eutectic dense structure, hence increasing hardness while reducing the ductility of the composite. On the other hand, the allying of HA in Mg-3Si matrix leads to the formation of structural porosity (5-13 per cent), thus resulting in low Young’s moduli. It is hypothesized that biocompatible phases formed within the composite enhanced the corrosion performance and bio-mechanical integrity of the composite. The degradation rate of Mg-3Si composite was reduced from 2.05 mm/year to 1.19 mm/year by the alloying of HA elements. Moreover, the fabricated composites showed an excellent bioactivity and offered a channel/interface to MG-63 cells for attachment, proliferation and differentiation.

Originality/value

Overall, the findings suggest that the Mg-3Si-HA composite fabricated by MA and plasma sintering may be considered as a potential biodegradable material for orthopedic application.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

1 – 5 of 5