Search results

1 – 10 of 86
Article
Publication date: 7 December 2022

Ahmed Mohammed, Tarek Zayed, Fuzhan Nasiri and Ashutosh Bagchi

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to…

Abstract

Purpose

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to formulate a pavement resilience index while incorporating asset management and the associated resilience indicators from the authors’ previous research work.

Design/methodology/approach

This paper introduces a set of holistic-based key indicators that reflect municipal infrastructure resiliency. Thenceforth, the indicators were integrated using the weighted sum mean method to form the proposed resilience index. Resilience indicators weights were determined using principal components analysis (PCA) via IBM SPSS®. The developed framework for the PCA was built based on an optimization model output to generate the required weights for the desired resilience index. The output optimization data were adjusted using the standardization method before performing PCA.

Findings

This paper offers a mathematical approach to generating a resilience index for municipal infrastructure. The statistical tests conducted throughout the study showed a high significance level. Therefore, using PCA was proper for the resilience indicators data. The proposed framework is beneficial for asset management experts, where introducing the proposed index will provide ease of use to decision-makers regarding pavement network maintenance planning.

Research limitations/implications

The resilience indicators used need to be updated beyond what is mentioned in this paper to include asset redundancy and structural asset capacity. Using clustering as a validation tool is an excellent opportunity for other researchers to examine the resilience index for each pavement corridor individually pertaining to the resulting clusters.

Originality/value

This paper provides a unique example of integrating resilience and asset management concepts and serves as a vital step toward a comprehensive integration approach between the two concepts. The used PCA framework offers dynamic resilience indicators weights and, therefore, a dynamic resilience index. Resiliency is a dynamic feature for infrastructure systems. It differs during their life cycle with the change in maintenance and rehabilitation plans, systems retrofit and the occurring disruptive events throughout their life cycle. Therefore, the PCA technique was the preferred method used where it is data-based oriented and eliminates the subjectivity while driving indicators weights.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 17 April 2024

Zul-Atfi Ismail

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance…

Abstract

Purpose

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance planning and management are integral components of the construction sector, serving the broader purpose of post-construction activities and processes. However, as Precast Concrete (PC) construction projects increase in scale and complexity, the interconnections among these activities and processes become apparent, leading to planning and performance management challenges. These challenges specifically affect the monitoring of façade components for corrective and preventive maintenance actions.

Design/methodology/approach

The concept of maintenance planning for façades, along with the main features of information and communication technology tools and techniques using building information modeling technology, is grounded in the analysis of numerous literature reviews in PC building scenarios.

Findings

This research focuses on an integrated system designed to analyze information and support decision-making in maintenance planning for PC buildings. It is based on robust data collection regarding concrete façades' failures and causes. The system aims to provide appropriate planning decisions and minimize the risk of façade failures throughout the building's lifetime.

Originality/value

The study concludes that implementing a research framework to develop such a system can significantly enhance the effectiveness of maintenance planning for façade design, construction and maintenance operations.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

Content available

Abstract

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Open Access
Article
Publication date: 28 February 2024

Hassan Th. Alassafi, Khalid S. Al-Gahtani, Abdulmohsen S. Almohsen and Abdullah M. Alsugair

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues…

Abstract

Purpose

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues, causing service disruptions and cost overruns. These defects can be avoided if a link between the early design stages and maintenance feedback is established. This study aims to use experts’ experience in HVAC maintenance in health-care facilities to list and evaluate the risk of each maintenance issue caused by a design defect, supported by the literature.

Design/methodology/approach

Following semistructured interviews with experts, 41 maintenance issues were identified as the most encountered issues. Subsequently, a survey was conducted in which 44 participants evaluated the probability and impact of each design-caused issue.

Findings

Chillers were identified as the HVAC components most prone to design defects and cost impact. However, air distribution ducts and air handling units are the most critical HVAC components for maintaining healthy conditions inside health-care facilities.

Research limitations/implications

The unavailability of comprehensive data on the cost impacts of all design-related defects from multiple health-care facilities limits the ability of HVAC designers to furnish case studies and quantitative approaches.

Originality/value

This study helps HVAC designers acquire prior knowledge of decisions that may have led to unnecessary and avoidable maintenance. These design-related maintenance issues may cause unfavorable health and cost consequences.

Article
Publication date: 26 July 2022

Hiwa Esmaeilzadeh, Alireza Rashidi Komijan, Hamed Kazemipoor, Mohammad Fallah and Reza Tavakkoli-Moghaddam

The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours…

Abstract

Purpose

The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours threshold is met. After receiving maintenance service, the model ignores previous flying hours and the aircraft can keep on flying until the threshold value is reached again. Moreover, the model considers aircraft age and efficiency to assign them to flights.

Design/methodology/approach

The aircraft maintenance routing problem (AMRP), as one of the most important problems in the aviation industry, determines the optimal route for each aircraft along with meeting maintenance requirements. This paper presents a bi-objective mixed-integer programming model for AMRP in which several criteria such as aircraft efficiency and ferrying flights are considered.

Findings

As the solution approaches, epsilon-constraint method and a non-dominated sorting genetic algorithm (NSGA-II), including a new initializing algorithm, are used. To verify the efficiency of NSGA-II, 31 test problems in different scales are solved using NSGA-II and GAMS. The results show that the optimality gap in NSGA-II is less than 0.06%. Finally, the model was solved based on real data of American Eagle Airlines extracted from Kaggle datasets.

Originality/value

The authors confirm that it is an original paper, has not been published elsewhere and is not currently under consideration of any other journal.

Article
Publication date: 20 February 2023

Zakaria Sakyoud, Abdessadek Aaroud and Khalid Akodadi

The main goal of this research work is the optimization of the purchasing business process in the Moroccan public sector in terms of transparency and budgetary optimization. The…

Abstract

Purpose

The main goal of this research work is the optimization of the purchasing business process in the Moroccan public sector in terms of transparency and budgetary optimization. The authors have worked on the public university as an implementation field.

Design/methodology/approach

The design of the research work followed the design science research (DSR) methodology for information systems. DSR is a research paradigm wherein a designer answers questions relevant to human problems through the creation of innovative artifacts, thereby contributing new knowledge to the body of scientific evidence. The authors have adopted a techno-functional approach. The technical part consists of the development of an intelligent recommendation system that supports the choice of optimal information technology (IT) equipment for decision-makers. This intelligent recommendation system relies on a set of functional and business concepts, namely the Moroccan normative laws and Control Objectives for Information and Related Technology's (COBIT) guidelines in information system governance.

Findings

The modeling of business processes in public universities is established using business process model and notation (BPMN) in accordance with official regulations. The set of BPMN models constitute a powerful repository not only for business process execution but also for further optimization. Governance generally aims to reduce budgetary wastes, and the authors' recommendation system demonstrates a technical and methodological approach enabling this feature. Implementation of artificial intelligence techniques can bring great value in terms of transparency and fluidity in purchasing business process execution.

Research limitations/implications

Business limitations: First, the proposed system was modeled to handle one type products, which are computer-related equipment. Hence, the authors intend to extend the model to other types of products in future works. Conversely, the system proposes optimal purchasing order and assumes that decision makers will rely on this optimal purchasing order to choose between offers. In fact, as a perspective, the authors plan to work on a complete automation of the workflow to also include vendor selection and offer validation. Technical limitations: Natural language processing (NLP) is a widely used sentiment analysis (SA) technique that enabled the authors to validate the proposed system. Even working on samples of datasets, the authors noticed NLP dependency on huge computing power. The authors intend to experiment with learning and knowledge-based SA and assess the' computing power consumption and accuracy of the analysis compared to NLP. Another technical limitation is related to the web scraping technique; in fact, the users' reviews are crucial for the authors' system. To guarantee timeliness and reliable reviews, the system has to look automatically in websites, which confront the authors with the limitations of the web scraping like the permanent changing of website structure and scraping restrictions.

Practical implications

The modeling of business processes in public universities is established using BPMN in accordance with official regulations. The set of BPMN models constitute a powerful repository not only for business process execution but also for further optimization. Governance generally aims to reduce budgetary wastes, and the authors' recommendation system demonstrates a technical and methodological approach enabling this feature.

Originality/value

The adopted techno-functional approach enabled the authors to bring information system governance from a highly abstract level to a practical implementation where the theoretical best practices and guidelines are transformed to a tangible application.

Details

Kybernetes, vol. 53 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 25 December 2023

Anna Trubetskaya, Alan Ryan, Daryl John Powell and Connor Moore

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk…

Abstract

Purpose

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk volumes. Further capacity gains may be achieved by extending the processing season into the winter, a key enabler for which being the reduction of duration of the winter maintenance overhaul period. This paper aims to investigate if Lean Six Sigma tools and techniques can be used to enhance operational maintenance performance, thereby releasing additional processing capacity.

Design/methodology/approach

Combining the Six-Sigma Define, Measure, Analyse, Improve, Control (DMAIC) methodology and the structured approach of Turnaround Maintenance (TAM) widely used in process industries creates a novel hybrid model that promises substantial improvement in maintenance overhaul execution. This paper presents a case study applying the DMAIC/TAM model to Ireland’s largest dairy processing site to optimise the annual maintenance shutdown. The objective was to deliver a 30% reduction in the duration of the overhaul, enabling an extension of the processing season.

Findings

Application of the DMAIC/TAM hybrid resulted in process enhancements, employee engagement and a clear roadmap for the operations team. Project goals were delivered, and original objectives exceeded, resulting in €8.9m additional value to the business and a reduction of 36% in the duration of the overhaul.

Practical implications

The results demonstrate that the model provides a structure that promotes systematic working and a continuous improvement focus that can have substantial benefits for wider industry. Opportunities for further model refinement were identified and will enhance performance in subsequent overhauls.

Originality/value

To the best of the authors’ knowledge, this is the first time that the structure and tools of DMAIC and TAM have been combined into a hybrid methodology and applied in an Irish industrial setting.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 25 April 2024

Metin Uzun

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV…

Abstract

Purpose

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV) by stochastically optimizing autonomous flight control system (AFCS) parameters. For minimizing autonomous flight cost and maximizing autonomous flight performance, a stochastic design approach is benefitted over certain parameters (i.e. gains of longitudinal PID controller of a hierarchical autopilot system) meanwhile lower and upper constraints exist on these design parameters.

Design/methodology/approach

A rotary wing mini UAV is produced in drone Laboratory of Iskenderun Technical University. This rotary wing UAV has three blades main rotor, fuselage, landing gear and tail rotor. It is also able to carry slung loads. AFCS variables (i.e. gains of longitudinal PID controller of hierarchical autopilot system) are stochastically optimized to minimize autonomous flight cost capturing rise time, settling time and overshoot during longitudinal flight and to maximize autonomous flight performance. Found outcomes are applied during composing rotary wing mini UAV autonomous flight simulations.

Findings

By using stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads over previously mentioned gains longitudinal PID controller when there are lower and upper constraints on these variables, a high autonomous performance having rotary wing mini UAV is obtained.

Research limitations/implications

Approval of Directorate General of Civil Aviation in Republic of Türkiye is essential for real-time rotary wing mini UAV autonomous flights.

Practical implications

Stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads is properly valuable for recovering autonomous flight performance cost of any rotary wing mini UAV.

Originality/value

Establishing a novel procedure for improving autonomous flight performance cost of a rotary wing mini UAV carrying slung loads and introducing a new process performing stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads meanwhile there exists upper and lower bounds on design variables.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 April 2024

Prajakta Chandrakant Kandarkar and V. Ravi

Industry 4.0 has put forward a smart perspective on managing supply chain networks and their operations. The current manufacturing system is primarily data-driven. Industries are…

Abstract

Purpose

Industry 4.0 has put forward a smart perspective on managing supply chain networks and their operations. The current manufacturing system is primarily data-driven. Industries are deploying new emerging technologies in their operations to build a competitive edge in the business environment; however, the true potential of smart manufacturing has not yet been fully unveiled. This research aims to extensively analyse emerging technologies and their interconnection with smart manufacturing in developing smarter supply chains.

Design/methodology/approach

This research endeavours to establish a conceptual framework for a smart supply chain. A real case study on a smart factory is conducted to demonstrate the validity of this framework for building smarter supply chains. A comparative analysis is carried out between conventional and smart supply chains to ascertain the advantages of smart supply chains. In addition, a thorough investigation of the several factors needed to transition from smart to smarter supply chains is undertaken.

Findings

The integration of smart technology exemplifies the ability to improve the efficiency of supply chain operations. Research findings indicate that transitioning to a smart factory radically enhances productivity, quality assurance, data privacy and labour efficiency. The outcomes of this research will help academic and industrial sectors critically comprehend technological breakthroughs and their applications in smart supply chains.

Originality/value

This study highlights the implications of incorporating smart technologies into supply chain operations, specifically in smart purchasing, smart factory operations, smart warehousing and smart customer performance. A paradigm transition from conventional, smart to smarter supply chains offers a comprehensive perspective on the evolving dynamics in automation, optimisation and manufacturing technology domains, ultimately leading to the emergence of Industry 5.0.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 21 December 2022

Prashan Bandara Wijesinghe and Prasanna Illankoon

The purpose of this study was to improve the overall equipment effectiveness (OEE) of the production process of the shredder operation of ABC company, an industrial waste…

Abstract

Purpose

The purpose of this study was to improve the overall equipment effectiveness (OEE) of the production process of the shredder operation of ABC company, an industrial waste management company which supplies pre-processed industrial waste as alternative fuel to a cement plant.

Design/methodology/approach

This case study investigated all possible availability and performance losses that caused the shredder system’s OEE and various problem-solving techniques, such as root cause analysis and Pareto analysis, were used to find the root cause of the reduced OEE.

Findings

After analysing this case study, three significant loss factors were identified from all the availability and performance losses, which caused the shredder system’s OEE losses. Practical solutions were found for the effect of those loss factors to improve the machine’s OEE and productivity.

Research limitations/implications

This case study has been concentrated on only analysing of losses and improvement of OEE in the production process and not about cost analysis between loss and improvements.

Originality/value

This paper shows how to improve the OEE of a production process through various problem-solving techniques by identifying its losses and how to achieve the best solutions for those losses in a practical manner.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 2
Type: Research Article
ISSN: 2398-5364

Keywords

1 – 10 of 86