Search results

1 – 10 of 264
Open Access
Article
Publication date: 28 February 2024

Hassan Th. Alassafi, Khalid S. Al-Gahtani, Abdulmohsen S. Almohsen and Abdullah M. Alsugair

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues…

Abstract

Purpose

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues, causing service disruptions and cost overruns. These defects can be avoided if a link between the early design stages and maintenance feedback is established. This study aims to use experts’ experience in HVAC maintenance in health-care facilities to list and evaluate the risk of each maintenance issue caused by a design defect, supported by the literature.

Design/methodology/approach

Following semistructured interviews with experts, 41 maintenance issues were identified as the most encountered issues. Subsequently, a survey was conducted in which 44 participants evaluated the probability and impact of each design-caused issue.

Findings

Chillers were identified as the HVAC components most prone to design defects and cost impact. However, air distribution ducts and air handling units are the most critical HVAC components for maintaining healthy conditions inside health-care facilities.

Research limitations/implications

The unavailability of comprehensive data on the cost impacts of all design-related defects from multiple health-care facilities limits the ability of HVAC designers to furnish case studies and quantitative approaches.

Originality/value

This study helps HVAC designers acquire prior knowledge of decisions that may have led to unnecessary and avoidable maintenance. These design-related maintenance issues may cause unfavorable health and cost consequences.

Open Access
Article
Publication date: 23 December 2020

Adam Redmer

The purpose of this paper is to develop an original model and a solution procedure for solving jointly three main strategic fleet management problems (fleet composition…

6642

Abstract

Purpose

The purpose of this paper is to develop an original model and a solution procedure for solving jointly three main strategic fleet management problems (fleet composition, replacement and make-or-buy), taking into account interdependencies between them.

Design/methodology/approach

The three main strategic fleet management problems were analyzed in detail to identify interdependencies between them, mathematically modeled in terms of integer nonlinear programing (INLP) and solved using evolutionary based method of a solver compatible with a spreadsheet.

Findings

There are no optimization methods combining the analyzed problems, but it is possible to mathematically model them jointly and solve together using a solver compatible with a spreadsheet obtaining a solution/fleet management strategy answering the questions: Keep currently exploited vehicles in a fleet or remove them? If keep, how often to replace them? If remove then when? How many perspective/new vehicles, of what types, brand new or used ones and when should be put into a fleet? The relatively large scale instance of problem (50 vehicles) was solved based on a real-life data. The obtained results occurred to be better/cheaper by 10% than the two reference solutions – random and do-nothing ones.

Originality/value

The methodology of developing optimal fleet management strategy by solving jointly three main strategic fleet management problems is proposed allowing for the reduction of the fleet exploitation costs by adjusting fleet size, types of exploited vehicles and their exploitation periods.

Details

Journal of Quality in Maintenance Engineering, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 25 October 2021

Yun Bai, Saeed Babanajad and Zheyong Bian

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces…

Abstract

Purpose

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations. Managing a network of transportation infrastructure assets, especially when the number is large, is a multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation infrastructure asset management analytical framework to study the impacts of a few key parameters/factors on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and replacement decisions in a finite planning horizon.

Design/methodology/approach

The analytical framework is further developed through a series of model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in previous research. The proposed methodology can be adapted to different types of assets for solving general asset management and capital planning problems.

Findings

The experiments and case studies revealed several findings. First, the authors showed the importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user cost of a single facility will have significant impacts on the system cost and correlation between them also influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of funds to bridges weighing the trade-off between user and agency costs.

Originality/value

On the path forward to develop the next generation of bridge management systems methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic deterioration models into bridge MR&R capital planning and decision-making. The authors propose an optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but also considers the epistemic uncertainties and variances of the model parameters of Markovian transition probabilities due to data errors or modeling processes.

Open Access
Article
Publication date: 18 January 2019

Christian Barth and Stefan Koch

In the last years the penetration of enterprise resource planning (ERP) systems within small, medium and large organizations increased steadily. Organizations are forced to adapt…

21096

Abstract

Purpose

In the last years the penetration of enterprise resource planning (ERP) systems within small, medium and large organizations increased steadily. Organizations are forced to adapt their systems and perform ERP upgrades in order to react to rapidly changing business environments, technological enhancements and rising pressure of competition. The purpose of this paper is to focus on the critical success factors for such projects.

Design/methodology/approach

The paper is based on a literature review and qualitative interviews with CEOs, CIOs, ERP consultants and project managers who recently carried out ERP upgrade projects in their respective organizations.

Findings

This paper identifies 14 critical success factors for ERP upgrade projects. Amongst others, effective project management, external support, the composition of the ERP team and the usage of a multiple system landscape play a key role for the success of the ERP upgrade. Furthermore, a comparison to the critical success factors for ERP implementation projects was conducted, and even though there are many similarities between these types of projects, several differences emerged.

Originality/value

ERP upgrade projects have a huge impact on organizations, but their success and antecedents for it are currently under-researched.

Details

Industrial Management & Data Systems, vol. 119 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 16 April 2018

Guillermo A. Riveros and Manuel E. Rosario-Pérez

The combined effects of several complex phenomena cause the deterioration of elements in steel hydraulic structures (SHSs) within the US lock system: corrosion, cracking and

1745

Abstract

Purpose

The combined effects of several complex phenomena cause the deterioration of elements in steel hydraulic structures (SHSs) within the US lock system: corrosion, cracking and fatigue, impact and overloads. Predicting the future condition state of these structures by the use of current condition state inspection data can be achieved through the probabilistic chain deterioration model. The purpose of this study is to derive the transition probability matrix using final elements modeling of a miter gate.

Design/methodology/approach

If predicted accurately, this information would yield benefits in determining the need for rehabilitation or replacement of SHS. However, because of the complexity and difficulties on obtaining sufficient inspection data, there is a lack of available condition states needed to formulate proper transition probability matrices for each deterioration case.

Findings

This study focuses on using a three-dimensional explicit finite element analysis (FEM) of a miter gate that has been fully validated with experimental data to derive the transition probability matrix when the loss of flexural capacity in a corroded member is simulated.

Practical implications

New methodology using computational mechanics to derive the transition probability matrices of navigation steel structures has been presented.

Originality/value

The difficulty of deriving the transition probability matrix to perform a Markovian analysis increases when limited amount of inspection data is available. The used state of practice FEM to derive the transition probability matrix is not just necessary but also essential when the need for proper maintenance is required but limited amount of the condition of the structural system is unknown.

Open Access
Article
Publication date: 11 October 2018

Kim Haugbølle and Lau M. Raffnsøe

Sustainable building design suffers from a lack of reliable life cycle data. The purpose of this paper is to compare life cycle costs of sustainable building projects, examine the…

4322

Abstract

Purpose

Sustainable building design suffers from a lack of reliable life cycle data. The purpose of this paper is to compare life cycle costs of sustainable building projects, examine the magnitude of various cost drivers and discuss the implications of an emerging shift in cost drivers.

Design/methodology/approach

This paper is based on data from 21 office buildings certified in Denmark according to the sustainable certification scheme DGNB.

Findings

The paper supports previous findings that construction costs and running costs each roughly make up half of the life cycle costs over a 50-year period. More surprising is the finding that the life cycle costs for cleaning are approximately twice as high as the supply costs for energy and water.

Research limitations/implications

The data set is based on actual construction costs of office buildings constructed in 2013-2017. Although all running costs are calculated rather than measured, they are based on a more detailed, specific and industry-supported set of calculation assumptions than is usual for life cycle costing studies because of extensive collaborative work in a number of concomitant national research and development projects.

Practical implications

Authorities, clients and building professionals heavily emphasise energy-saving measures in new Danish buildings. The paper suggests redirecting this effort towards other more prominent cost drivers like cleaning and technical installations.

Originality/value

This paper provides a notable contribution to the academic understanding of the significance of different cost drivers as well as the practical implementation of life cycle costing.

Details

Facilities, vol. 37 no. 9/10
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 2 November 2023

FengShou Liu, Guang Yang, Zhaoyang Chen, Yinhua Zhang and Qingyue Zhou

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail…

Abstract

Purpose

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail technology of high-speed railway.

Design/methodology/approach

This study reviews the evolution of high-speed rail standards in China, comparing their chemical composition, mechanical attributes and geometric specifications with EN standards. It delves into the status of rail production technology, shifts in key performance indicators and the quality characteristics of rails. The analysis further examines the interplay between wheels and rails, the implementation of grinding technology and the techniques for inspecting rail service conditions. It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem. The paper concludes with an insightful prognosis of high-speed railway technology development in China.

Findings

The rail standards of high-speed railway in China are scientific and advanced, highly operational and in line with international standards. The quality and performance of rail in China have reached the world’s advanced level. The 60N profile guarantees the operation quality of wheel–rail interaction effectively. The rail grinding technology system scientifically guarantees the long-term good service performance of the rail. The rail service state detection technology is scientific and efficient. The rail technology will take “more intelligent” and “higher speed” as the development direction to meet the future needs of high-speed railway in China.

Originality/value

The development direction of rail technology for high-speed railway in China is defined, which will promote the continuous innovation and breakthrough of rail technology.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 17 November 2023

Peiman Tavakoli, Ibrahim Yitmen, Habib Sadri and Afshin Taheri

The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin…

Abstract

Purpose

The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin smart and sustainable built environment (DT) for predictive asset management (PAM) in building facilities.

Design/methodology/approach

Qualitative research data were collected through a comprehensive scoping review of secondary sources. Additionally, primary data were gathered through interviews with industry specialists. The analysis of the data served as the basis for developing blockchain-based DT data provenance models and scenarios. A case study involving a conference room in an office building in Stockholm was conducted to assess the proposed data provenance model. The implementation utilized the Remix Ethereum platform and Sepolia testnet.

Findings

Based on the analysis of results, a data provenance model on blockchain-based DT which ensures the reliability and trustworthiness of data used in PAM processes was developed. This was achieved by providing a transparent and immutable record of data origin, ownership and lineage.

Practical implications

The proposed model enables decentralized applications (DApps) to publish real-time data obtained from dynamic operations and maintenance processes, enhancing the reliability and effectiveness of data for PAM.

Originality/value

The research presents a data provenance model on a blockchain-based DT, specifically tailored to PAM in building facilities. The proposed model enhances decision-making processes related to PAM by ensuring data reliability and trustworthiness and providing valuable insights for specialists and stakeholders interested in the application of blockchain technology in asset management and data provenance.

Details

Smart and Sustainable Built Environment, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 10 August 2018

Paul Brous, Marijn Janssen and Paulien Herder

Managers are increasingly looking to adopt the Internet of Things (IoT) to include the vast amount of big data generated in their decision-making processes. The use of IoT might…

8525

Abstract

Purpose

Managers are increasingly looking to adopt the Internet of Things (IoT) to include the vast amount of big data generated in their decision-making processes. The use of IoT might yield many benefits for organizations engaged in civil infrastructure management, but these benefits might be difficult to realize as organizations are not equipped to handle and interpret this data. The purpose of this paper is to understand how IoT adoption affects decision-making processes.

Design/methodology/approach

In this paper the changes in the business processes for managing civil infrastructure assets brought about by IoT adoption are analyzed by investigating two case studies within the water management domain. Propositions for effective IoT adoption in decision-making processes are derived.

Findings

The results show that decision processes in civil infrastructure asset management have been transformed to deal with the real-time nature of the data. The authors found the need to make organizational and business process changes, development of new capabilities, data provenance and governance and the need for standardization. IoT can have a transformative effect on business processes.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the propositions further.

Practical implications

The paper shows that data provenance is necessary to be able to understand the value and the quality of the data often generated by various organizations. Managers need to adapt new capabilities to be able to interpret the data.

Originality/value

This paper fulfills an identified need to understand how IoT adoption affects decision-making processes in asset management in order to be able to achieve expected benefits and mitigate risk.

Details

Business Process Management Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1463-7154

Keywords

Open Access
Article
Publication date: 17 November 2022

Alireza Moghayedi, Dylan Hübner and Kathy Michell

This study aims to examine the concept of innovative technologies and identify their impacts on the environmental sustainability of commercial properties in South Africa. This…

1908

Abstract

Purpose

This study aims to examine the concept of innovative technologies and identify their impacts on the environmental sustainability of commercial properties in South Africa. This slow adoption is attributed to South Africa’s energy building regulation, SANS 204, which does not promote energy-conscious commercial property development. Furthermore, it was observed that buildings waste significant amounts of energy as electrical appliances are left on when they are not in use, which can be prevented using innovative technologies.

Design/methodology/approach

The researchers attempted to evaluate the impact of innovative technologies through an overarching constructivist mixed-method paradigm. The research was conducted using a multi-case study approach on green buildings which had innovative technologies installed. The data collection took the form of online, semi-structured interviews, where thematic analysis was used to identify emergent themes from the qualitative data, and descriptive statistics was used to evaluate the quantitative data.

Findings

It was found that implementing innovative technologies to reduce the energy consumption of commercial buildings could achieve energy savings of up to 23%. Moreover, a commercial building’s carbon footprint can be reduced to 152CO2/m2 and further decreased to 142CO2/m2 through the adoption of a Photovoltaics plant. The study further found that innovative technologies improved employee productivity and promoted green learning and practices.

Originality/value

This research demonstrated the positive impact innovative technologies have on energy reduction and the sustainability of commercial properties. Hence, facility managers should engage innovative technologies when planning a commercial development or refurbishment.

Details

Facilities , vol. 41 no. 5/6
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of 264