Search results

1 – 3 of 3
To view the access options for this content please click here
Article
Publication date: 29 May 2019

Selman Demirtas, Hakan Kaleli, Mahdi Khadem and Dae-Eun Kim

This study aims to investigate the tribological characteristics of a Napier-type second piston ring against a cylinder liner in the presence of graphene nano-additives…

Abstract

Purpose

This study aims to investigate the tribological characteristics of a Napier-type second piston ring against a cylinder liner in the presence of graphene nano-additives mixed into 5W40 fully synthetic engine oil.

Design/methodology/approach

Wear tests were carried out in the boundary lubrication condition using a reciprocating tribometer, and real engine tests were performed using a single spark ignition Honda GX 270 test engine for a duration of 75 h.

Findings

The experimental results of the tribometer tests revealed that the nano-additives formed a layer on the rubbed surfaces of both the piston ring and the cylinder liner. However, this layer was only formed at the top dead center of the cylinder liner during the engine tests. The accumulation of carbon (C) from the graphene was heavily detected on the rubbed surface of piston ring/cylinder liner, mixed with other additive elements such as Ca, Zn, S and P. Overall, the use of graphene nano-additives in engine oil was found to improve the frictional behavior in the boundary and mixed lubrication regimes. Abrasive wear was found to be the main mechanism occurring on the surface of both piston rings and cylinder liners.

Originality/value

Though many researchers have discussed the potential benefits of graphene as a nano-additive in oil to reduce the friction and wear in laboratory tests using tribometers, to date, no actual engine tests have been performed. In this paper, both tribometer and real engine tests were performed on a piston ring and cylinder liner using a fully formulated oil with and without graphene nano-additives in the boundary lubrication condition. It was found that a graphene nano-additive plays an active role in lowering the coefficient of friction and increasing surface protection and lubrication by forming a protective layer on the rubbing surfaces.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 6 December 2018

Selman Demirtas, Hakan Kaleli, Mahdi Khadem and Dae-eun Kim

Wear on internal combustion engines is a loss of material that occurs with the rubbing of the materials in contact with each other and significantly reduces the economic…

Abstract

Purpose

Wear on internal combustion engines is a loss of material that occurs with the rubbing of the materials in contact with each other and significantly reduces the economic life of the engine. Even the smallest precaution that can be taken to prevent friction and wear in the engines can provide economical savings in very large quantities. Internal combustion engines are widely utilized in modem automobiles. Around 10 per cent of the total fuel energy is dissipated to heat due to mechanical friction, among which 20 per cent is caused by the contact between the cylinder liner and the piston rings.

Design/methodology/approach

In this study, real piston ring-cylinder specimens were tested with reciprocating tribometer by using five different nanoparticles added to engine oil to investigate their wear and friction behavior.

Findings

With regard to the experiments, it has been found that the best results were determined by TiO2 and single-walled carbon nanotubes according to boron nitride, multi-walled carbon nanotubes and graphene nanoparticles added to the engine oil, respectively. At the end of the tests, different wear mechanisms have been determined after the surface analyses on the piston ring and cylinder liner surface, and abrasive wear has been observed as the main wear mechanism.

Originality/value

This paper has an originality with regard to adding different nanoparticles into the commercial engine oil.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 31 January 2020

Mahdi Shayanmehr and Omid Basiri

In this paper, the important aspects of vibration analysis of carbon nanotubes (CNTs) as nano-resonators are studied. This study has covered the important nonlinear…

Abstract

Purpose

In this paper, the important aspects of vibration analysis of carbon nanotubes (CNTs) as nano-resonators are studied. This study has covered the important nonlinear phenomena such as jump super-harmonic and chaotic behavior. CNT is modeled by using the modified nonlocal theory (MNT).

Design/methodology/approach

In previous research studies, the effects of CNT’s rotary inertia, stiffness and shear modulus of the medium were neglected. So by considering these terms in MNT, a comprehensive model of vibrational behavior of carbon nanotube as a nanosensor is presented. The nanotube is modeled as a nonlocal nonlinear beam. The first eigenmode of an undamped simply supported beam is used to extract the nonlinear equation of CNT. Harmonic balance method is used to solve the equation, while to study its super-harmonic behavior, higher-order harmonic terms were used.

Findings

In light of frequency response equation, jump phenomenon and chaotic behavior of the nanotube with respect to the amplitude of excitation are investigated. Also in each section of the study, the effects of elastic medium and nonlocal parameters on the vibration behavior of nanotube are investigated. Furthermore, parts of the results in linear and nonlinear cases were compared with results of other references.

Originality/value

The present modification of the nonlocal theory is so important and useful for accurate investigation of the vibrational behavior of nano structures such as a nano-resonator.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 3 of 3