Search results

1 – 2 of 2
Article
Publication date: 8 December 2022

Jonathan S. Greipel, Regina M. Frank, Meike Huber, Ansgar Steland and Robert H. Schmitt

To ensure product quality within a manufacturing process, inspection processes are indispensable. One task of inspection planning is the selection of inspection characteristics…

Abstract

Purpose

To ensure product quality within a manufacturing process, inspection processes are indispensable. One task of inspection planning is the selection of inspection characteristics. For optimization of costs and benefits, key characteristics can be defined by which the product quality can be checked with sufficient accuracy. The manual selection of key characteristics requires substantial planning effort and becomes uneconomic if many product variants prevail. This paper, therefore, aims to show a method for the efficient determination of key characteristics.

Design/methodology/approach

The authors present a novel Algorithm for the Selection of Key Characteristics (ASKC) based on an auto-encoder and a risk analysis. Given historical measurement data and tolerances, the algorithm clusters characteristics with redundant information and selects key characteristics based on a risk assessment. The authors compare ASKC with the algorithm Principal Feature Analysis (PFA) using artificial and historical measurement data.

Findings

The authors find that ASKC delivers superior results than PFA. Findings show that the algorithms enable the cost-efficient selection of key characteristics while maintaining the informative value of the inspection concerning the quality.

Originality/value

This paper fills an identified gap for simplified inspection planning with the method for the efficient selection of key features via ASKC.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 8 February 2023

Md Tanweer Ahmad, Mohammad Firouz and Nishit Kumar Srivastava

Increasing scarcity of natural resources and the adverse effects of unsustainable practices call for more and more efficient management strategies in the energy industry. The…

136

Abstract

Purpose

Increasing scarcity of natural resources and the adverse effects of unsustainable practices call for more and more efficient management strategies in the energy industry. The quality of the coke plays a significant role in the quality and durability of the output steel which is produced using the energy from the coal. This paper aims to investigate the dynamic coal blending problem under overall cost and coke quality constraints in the steel industry within a periodic cycle of operations.

Design/methodology/approach

Considering the variability of the natural properties over a periodic cycle, this study proposes a multi-period mixed-integer non-linear programming formulation to optimize the total blending costs while taking various coke quality constraints into account. Besides, this study applies factorial design to investigate about the significant effect of coal proportions as well as improvement into the overall cost of blending.

Findings

In this case study, utilizing real data from a coal blending facility in India, through a factorial design, the authors obtain optimal desirable levels of coal proportions and their criticality levels towards the total cost of blending (TCB) or objective function. This analysis reflects the role of the coke quality constraints in the objective function value while characterizing the price of sustainability for the case study among other critical insights.

Originality/value

Objective function (or TCB) includes basic coal cost, movement cost and environmental costs during the coal and coke processing at a coke-oven and blast furnace of steel industry. The price of sustainability provides managerial insights on that sacrifices the industry has to make in order to become more “sustainable”.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Access

Year

Last 12 months (2)

Content type

1 – 2 of 2