Search results

1 – 10 of 310
Article
Publication date: 4 October 2019

Xiaoming Zhang, Chen Lei, Jun Liu, Jie Li, Jie Tan, Chen Lu, Zheng-Zheng Chao and Yu-Zhang Wan

In spite of the vehicle, magnetic field interference can be reduced by some measures and techniques in ammunition design and manufacturing stage, the corruption of the vehicle…

Abstract

Purpose

In spite of the vehicle, magnetic field interference can be reduced by some measures and techniques in ammunition design and manufacturing stage, the corruption of the vehicle magnetic field can still reach hundreds to thousands of nanoteslas. Besides, the magnetic field that the ferromagnetic materials generate in response to the strong magnetic field in the vicinity of the body. So, a real-time and accurate vehicle magnetic field calibration method is needed to improve the real-time measurement accuracy of the geomagnetic field for spinning projectiles.

Design/methodology/approach

Unlike the past two-step calibration method, the algorithm uses a linear model to calibrate the magnetic measurement error in real-time. In the method, the elliptical model of magnetometer measurement is established to convert the coefficients of hard and soft iron errors into the parameters of the elliptic equation. Then, the parameters are estimated by recursive least square estimator in real-time. Finally, the initial conditions for the estimator are established using prior knowledge method or static calibration method.

Findings

Studies show the proposed algorithm has remarkable estimation accuracy and robustness and it realizes calibration the magnetic measurement error in real-time. A turntable experiments indicate that the post-calibration residuals approximate the measurement noise of the magnetometer and the roll accuracy is better than 1°. The algorithm is restricted to biaxial magnetometers’ calibration in real-time as expressed in this paper. It, however, should be possible to broaden this method’s applicability to triaxial magnetometers' calibration in real-time.

Originality/value

Unlike the past two-step calibration method, the algorithm uses a linear model to calibrate the magnetic measurement error in real-time and the calculation is small. Besides, it does not take up storage space. The proposed algorithm has remarkable estimation accuracy and robustness and it realizes calibration the magnetic measurement error in real time. The algorithm is restricted to biaxial magnetometers’ calibration in real-time as expressed in this paper. It, however, should be possible to broaden this method’s applicability to triaxial magnetometers’ calibration in real-time.

Article
Publication date: 5 May 2015

Kehinde Ogunyanda, Wilfred Fritz and Robert van Zyl

This paper aims to report the modelling and simulation work that predicts the behaviours of both a Josephson junction (JJ) and a dc superconducting quantum interference device…

Abstract

Purpose

This paper aims to report the modelling and simulation work that predicts the behaviours of both a Josephson junction (JJ) and a dc superconducting quantum interference device (SQUID). It is pertinent to predict the SQUID magnetometers’ behaviours via simulations, before subjecting them to real experiments because they are quite expensive to acquire, and can be easily damaged during test analysis.

Design/methodology/approach

To achieve this, power simulation (PSIM) was used to model and simulate a JJ, using the basic equation that describes the effective current through it. A dc SQUID magnetometer, which is composed of two JJs, was then modelled and simulated using the modelled JJ. Thermal noise simulation is also included, to observe its effects on the magnetometer’s output. A directly coupled flux-locked loop circuit was later included in the simulation to amplify and linearise the SQUID’s output, which is usually sinusoidal.

Findings

When steady bias currents were applied to the JJ, the resulting voltage across it was seen to oscillate. The JJ’s and SQUID’s voltage–current characteristics, and voltage–flux characteristics were also observed in the simulations, and the results respectively agree with the behaviours of a typical JJ and dc SQUID magnetometer.

Originality/value

A way of simulating SQUIDs, without a superconducting simulation tool, is presented. The work provides a much simpler way of studying the behaviour of dc SQUID magnetometers, due to the easy accessibility and fast simulation capability of the software used, with an added advantage of being able to simulate the thermal noise effects, without having to import this facility from secondary software.

Details

Journal of Engineering, Design and Technology, vol. 13 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 November 2017

Jiliang Mu, Zhang Qu, Zongmin Ma, Shaowen Zhang, Yunbo Shi, Jian Gao, Xiaoming Zhang, Huiliang Cao, li Qin, Jun Liu and Yanjun Li

This study aims to fabricate and manipulate ensemble spin of negative nitrogen-vacancy (NV) centres optimally for future solid atomic magnetometers/gyroscope. Parameters for…

Abstract

Purpose

This study aims to fabricate and manipulate ensemble spin of negative nitrogen-vacancy (NV) centres optimally for future solid atomic magnetometers/gyroscope. Parameters for sample preparation most related to magnetometers/gyroscope are, in particular, the concentration and homogeneity of the NV centres, the parameters’ microwave antenna of resonance frequency and the strength of the microwave on NV centres. Besides, the abundance of other impurities such as neutral NV centres (NV0) and substitutional nitrogen in the lattice also plays a critical role in magnetic sensing.

Design/methodology/approach

The authors succeeded in fabricating the assembly of NV centres in diamond and they determined its concentration of (2-3) × 1016 cm−3 with irradiation followed by annealing under a high temperature condition. They explored a novel magnetic resonance approach to detect the weak magnetic fields that takes advantage of the solid-state electron ensemble spin of NV centres in diamond. In particular, the authors set up a magnetic sensor on the basis of the assembly of NV centres. They succeeded in fabricating the assembly of NV centres in diamond and determined its concentration. They also clarified the magnetic field intensity measured at different positions along the antenna with different lengths, and they found the optimal position where the signal of the magnetic field reaches the maximum.

Findings

The authors mainly reported preparation, initialization, manipulation and measurement of the ensemble spin of the NV centres in diamond using optical excitation and microwave radiation methods with variation of the external magnetic field. They determined the optimal parameters of irradiation and annealing to generate the ensemble NV centres, and a concentration of NV centres as high as 1016 cm−3 in diamond was obtained. In addition, they found that sensitivity of the magnetometer using this method can reach as low as 5.22 µT/Hz currently.

Practical implications

This research can shed light on the development of an atomic magnetometer and a gyroscope on the basis of the ensemble spin of NV centres in diamond.

Social implications

High concentration spin of NV in diamond is one of the advantages compared with that of the atomic vapor cells, because it can obtain a higher concentration. When increasing the spin concentration, the spin signal is easy to detect, and macro-atomic spin magnetometer become possible. This research is the first step for solid atomic magnetometers with high spin density and high sensitivity potentially with further optimization. It has a wide range of applications from fundamental physics tests, sensor applications and navigation to detection of NMR signals.

Originality/value

As has been pointed out, in this research, the authors mainly worked on fabricating NV centres with high concentration (1015-1016 cm−3) in diamond by using optimal irradiation and annealing processes, and they quantitatively defined the NV concentration, which is important for the design of higher concentration processes in the magnetometer and gyroscope. Until now, few groups can directly define the NV concentration. Besides, the authors optimized the microwave antenna parameters experimentally and explored the dependence between the splitting of the magnetic resonance and the magnetic fields, which dictated the minimum detectable magnetic field.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 July 2018

Bing Hua, Zhiwen Zhang, Yunhua Wu and Zhiming Chen

The geomagnetic field vector is a function of the satellite’s position. The position and speed of the satellite can be determined by comparing the geomagnetic field vector…

Abstract

Purpose

The geomagnetic field vector is a function of the satellite’s position. The position and speed of the satellite can be determined by comparing the geomagnetic field vector measured by on board three-axis magnetometer with the standard value of the international geomagnetic field. The geomagnetic model has the disadvantages of uncertainty, low precision and long-term variability. Therefore, accuracy of autonomous navigation using the magnetometer is low. The purpose of this paper is to use the geomagnetic and sunlight information fusion algorithm to improve the orbit accuracy.

Design/methodology/approach

In this paper, an autonomous navigation method for low earth orbit satellite is studied by fusing geomagnetic and solar energy information. The algorithm selects the cosine value of the angle between the solar light vector and the geomagnetic vector, and the geomagnetic field intensity as observation. The Adaptive Unscented Kalman Filter (AUKF) filter is used to estimate the speed and position of the satellite, and the simulation research is carried out. This paper also made the same study using the UKF filter for comparison with the AUKF filter.

Findings

The algorithm of adding the sun direction vector information improves the positioning accuracy compared with the simple geomagnetic navigation, and the convergence and stability of the filter are better. The navigation error does not accumulate with time and has engineering application value. It also can be seen that AUKF filtering accuracy is better than UKF filtering accuracy.

Research limitations/implications

Geomagnetic navigation is greatly affected by the accuracy of magnetometer. This paper does not consider the spacecraft’s environmental interference with magnetic sensors.

Practical implications

Magnetometers and solar sensors are common sensors for micro-satellites. Near-Earth satellite orbit has abundant geomagnetic field resources. Therefore, the algorithm will have higher engineering significance in the practical application of low orbit micro-satellites orbit determination.

Originality/value

This paper introduces a satellite autonomous navigation algorithm. The AUKF geomagnetic filter algorithm using sunlight information can obviously improve the navigation accuracy and meet the basic requirements of low orbit small satellite orbit determination.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 19 February 2020

Feng Cui, Dong Gao and Jianhua Zheng

The main reason for the low accuracy of magnetometer-based autonomous orbit determination is the coarse accuracy of the geomagnetic field model. Furthermore, the geomagnetic field…

Abstract

Purpose

The main reason for the low accuracy of magnetometer-based autonomous orbit determination is the coarse accuracy of the geomagnetic field model. Furthermore, the geomagnetic field model error increases obviously during geomagnetic storms, which can still further reduce the navigation accuracy. The purpose of this paper is to improve the accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms.

Design/methodology/approach

In this paper, magnetometer-based autonomous orbit determination via a measurement differencing extended Kalman filter (MDEKF) is studied. The MDEKF algorithm can effectively remove the time-correlated portion of the measurement error and thus can evidently improve the accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms. Real flight data from Swarm A are used to evaluate the performance of the MDEKF algorithm presented in this study. A performance comparison between the MDEKF algorithm and an extended Kalman filter (EKF) algorithm is investigated for different geomagnetic storms and sampling intervals.

Findings

The simulation results show that the MDEKF algorithm is superior to the EKF algorithm in terms of estimation accuracy and stability with a short sampling interval during geomagnetic storms. In addition, as the size of the geomagnetic storm increases, the advantages of the MDEKF algorithm over the EKF algorithm become more obvious.

Originality/value

The algorithm in this paper can improve the real-time accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms with a low computational burden and is very suitable for low-orbit micro- and nano-satellites.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 March 2018

Ting Li, Jinsheng Zhang, Shicheng Wang, Dongyu Li, Zhifeng Lv and Jiangjun Jiang

This study aims to find a novel solution to the calibration of three-axis magnetometers to suppress errors of sensors. The nature of the calibration process is parameter…

Abstract

Purpose

This study aims to find a novel solution to the calibration of three-axis magnetometers to suppress errors of sensors. The nature of the calibration process is parameter estimation and hence the purpose of the paper is to calculate the error parameters and eliminate sensor errors and obtain the true value of the pure magnetic field.

Design/methodology/approach

The paper puts forward a calibration method using an alternative iteration looping optimization (AILO) to estimate the parameters. The proposed method divided the parameters to be estimated into two parts: a portion less than one and the other greater than one. Parameters with different orders of magnitude are calculated respectively, which let one part to be a known quantity and the other part is derived by the known quantity; the derived quantity is used to calculate the known quantity again, and looping iteration multiple times until the iteration termination condition is satisfied.

Findings

The simulation and experimental results indicate that the calibration accuracy is improved at least by two orders by the proposed method compared to the two-step method and the linear decreasing weight particle swarm optimization (LDW-PSO) algorithm which proves the validity of the proposed method.

Practical implications

The proposed method can improve the calibration accuracy of total magnetic field, which provides a reference to the calibration of three-axis magnetometers.

Originality/value

A calibration method based on the AILO is proposed in this paper, which is used to improve the calibration accuracy of the three-axis magnetometer.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 August 2019

Gang Shi, Xisheng Li, Zhe Wang and Yanxia Liu

The magnetometer measurement update plays a key role in correcting yaw estimation in fusion algorithms, and hence, the yaw estimation is vulnerable to magnetic disturbances. The…

Abstract

Purpose

The magnetometer measurement update plays a key role in correcting yaw estimation in fusion algorithms, and hence, the yaw estimation is vulnerable to magnetic disturbances. The purpose of this study is to improve the ability of the fusion algorithm to deal with magnetic disturbances.

Design/methodology/approach

In this paper, an adaptive measurement equation based on vehicle status is derived, which can constrain the yaw estimation from drifting when vehicle is running straight. Using this new measurement, a Kalman filter-based fusion algorithm is constructed, and its performance is evaluated experimentally.

Findings

The experiments results demonstrate that the new measurement update works as an effective supplement to the magnetometer measurement update in the present of magnetic disturbances, and the proposed fusion algorithm has better yaw estimation accuracy than the conventional algorithm.

Originality/value

The paper proposes a new adaptive measurement equation for yaw estimation based on vehicle status. And, using this measurement, the fusion algorithm can not only reduce the weight of disturbed sensor measurement but also utilize the character of vehicle running to deal with magnetic disturbances. This strategy can also be used in other orientation estimation fields.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 July 2021

Aditi, Supriyo Das and Ram Gopal

Si-based micro electro mechanical systems (MEMS) magnetometer does not require specialized magnetic materials avoiding magnetic hysteresis, ease in fabrication and low power…

Abstract

Purpose

Si-based micro electro mechanical systems (MEMS) magnetometer does not require specialized magnetic materials avoiding magnetic hysteresis, ease in fabrication and low power consumption. It can be fabricated using the same processes used for gyroscope and accelerometer fabrication. The paper reports the dicing mechanism for the released MEMS xylophone magnetic sensor fabricated using wafer bonding technology and its characterization in ambient pressure and under vacuum conditions. The purpose of this paper is to dice the wafer bonded Si-magnetometer in a cost-effective way without the use of laser dicing and test it for Lorentz force transduction.

Design/methodology/approach

A xylophone bar MEMS magnetometer using Lorentz force transduction is developed. The fabricated MEMS-based xylophone bars in literature are approximately 500 µm. The present work shows the released structure (L = 592 µm) fabricated by anodic bonding technique using conducting Si as the structural layer and tested for Lorentz force transduction. The microstructures fabricated at the wafer level are released. Dicing these released structures using conventional diamond blade dicing may damage the structures and reduce the yield. To avoid the problem, positive photoresist S1813 was filled before dicing. The dicing of the wafer, filled with photoresist and later removal of photoresist post dicing, is proposed.

Findings

The devices realized are stiction free and straight. The dynamic measurements are done using laser Doppler vibrometer to verify the released structure and test its functionality for Lorentz force transduction. The magnetic field is applied using a permanent magnet and Helmholtz coil. Two sensors with quality factors 70 and 238 are tested with resonant frequency 112.38 kHz and 114.38 kHz, respectively. The sensor D2, with Q as 238, shows a mechanical sensitivity of 500 pm/Gauss and theoretical Brownian noise-limited resolution of 53 nT/vHz.

Originality/value

The methodology and the study will help develop Lorentz force–based MEMS magnetometers such that stiction-free structures are released using wet etch after the mechanical dicing.

Details

Microelectronics International, vol. 38 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 8 February 2018

Liming Fan, Xiyuan Kang, Quan Zheng, Xiaojun Zhang, Xuejun Liu, Zhoushan Geng and Chong Kang

This paper aims to focus on the tracking of a moving magnetic target by using total field magnetometers and to present a tracking method based on the gradient of a magnetic…

Abstract

Purpose

This paper aims to focus on the tracking of a moving magnetic target by using total field magnetometers and to present a tracking method based on the gradient of a magnetic anomaly. In the tracking, it is assumed that the motion of the target is equivalent to a first-order Markov process. And the unit direction vector of the magnetic moment from the gradient of the magnetic anomaly can be obtained. According to the unit direction vector, the inverse problem is turned into an optimization problem to estimate the parameters of the target. The particle swarm optimization algorithm is used to solve this optimization problem. The proposed method is validated by the numerical simulation and real data. The parameters of the target can be calculated rapidly using the proposed method. And the results show that the estimated parameters of the mobile target using the proposed method are very close to the true values.

Design/methodology/approach

The authors focus on the tracking of a moving magnetic target by using total field magnetometers and present a tracking method based on the gradient of a magnetic anomaly.

Findings

The paper provides an effective method for tracking the magnetic target based on an array with total field sensors.

Originality/value

Comparing with a vector magnetic sensor, the measurement of the scalar magnetic sensor is almost not influenced by its orientation. In this paper, a moving magnetic target was tracked by using total field magnetometers and a tracking method presented based on the gradient of a magnetic anomaly.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 September 2007

Chris Shelton

The paper aims to explain the operating principles of fluxgate magnetometers.

Abstract

Purpose

The paper aims to explain the operating principles of fluxgate magnetometers.

Design/methodology/approach

The approach is to describe the uses of ring fluxgate magnetometers and their operating principles.

Findings

The operating principles of fluxgate magnetometers are poorly understood and their applications potential seriously undervalued. An increasing number of everyday applications relying on sensing and fluxgates, in conjunction with modern analogue and micro‐controller electronics, represent unique value in implementing a variety of low‐cost, precise and absolute sensing elements. As magnetometers they are small, robust, reliable, low‐cost and can resolve flux densities to nano Teslas. This can be exploited to make a variety of sensors which are precise, inherently non‐contact and, for rotary sensing, have full 360° operation.

Originality/value

The paper illustrates how fluxgate magnetometers can form the basis for a variety of robust, reliable, non‐contact industrial sensors.

Details

Sensor Review, vol. 27 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 310