Search results

1 – 10 of 666
Article
Publication date: 8 August 2019

Tasawar Hayat, Zeenat Bashir, Sumaira Qayyum and Ahmed Alsaedi

This paper aims to explore the study of magnetohydrodynamic viscous fluid flow past on a stretching cylinder with nonlinear thermal radiation having gyrotactic microorganisms.

Abstract

Purpose

This paper aims to explore the study of magnetohydrodynamic viscous fluid flow past on a stretching cylinder with nonlinear thermal radiation having gyrotactic microorganisms.

Design/methodology/approach

Appropriate transformations reduce the nonlinear partial differential equation to ordinary ones. Subsequent nonlinear equations are calculated to get convergent series solutions.

Findings

Fluid velocity declines for elevating values of magnetic field parameter. For larger values of curvature parameter near the cylinder temperature reduces.

Originality/value

To the best of the authors’ knowledge, magnetohydrodynamic boundary layer flow of viscous fluid by nonlinear stretching cylinder with nonlinear thermal radiation having gyrotatic microorganisms is not studied yet. The purpose is to study this.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2019

Rahimah Jusoh, Roslinda Nazar and Ioan Pop

The purpose of this study is to describe the unsteady three-dimensional magnetohydrodynamic stagnation point flow of nanofluids with heat generation/absorption.

Abstract

Purpose

The purpose of this study is to describe the unsteady three-dimensional magnetohydrodynamic stagnation point flow of nanofluids with heat generation/absorption.

Design/methodology/approach

The comprehensive numerical simulations in this study accommodate a physical insight into the heat transfer and flow problem. The use of finite difference method through the bvp4c function in Matlab provides the numerical results and graphical illustrations for the heat transfer rate and shear stress.

Findings

Dual solutions are discovered in this study. Thus, stability analysis is implemented and the first solution complies the stability behavior. Silver nanoparticles dominate the highest thermal conductivity. Accretion of the rate of heat transfer is obtained with an increment in the magnitude of heat absorption, suction parameter and nanoparticle volume fraction. A stronger magnetic field and larger unsteadiness parameter contribute to the increase of the surface shear stress.

Practical implications

Many practical fluid mechanics problems involve the time-dependent element. Practically, an unsteady flow of nanofluid can be implemented in the micro-manufacturing, periodic heat exchanges process, nano drug delivery system and nuclear reactors.

Originality/value

In spite of numerous studies on the unsteady flow, none of the researchers combined the effect of heat generation/absorption and magnetic field in the nanofluid model. The behavior of the flow and heat transfer have been analyzed thoroughly with the variations in the unsteadiness parameter, heat source/sink and nanoparticle volume fraction. Moreover, the discovery of dual solutions in this model strengthens the novelty of this study. Subsequently, the implementation of stability analysis leads to a remarkable revelation where the first solution is found to be stable.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 August 2018

K. Ramesh and M. Devakar

The main purpose of this paper is to study the effect of heat transfer on the peristaltic flow of a magnetohydrodynamic Walters B fluid through a porous medium in an inclined…

Abstract

Purpose

The main purpose of this paper is to study the effect of heat transfer on the peristaltic flow of a magnetohydrodynamic Walters B fluid through a porous medium in an inclined asymmetric channel.

Design/methodology/approach

The approximate analytical solutions of the governing partial differential equations are obtained using the regular perturbation method by taking wave number as a small parameter. The solutions for the pressure difference and friction forces are evaluated using numerical integration.

Findings

It is noticed that the pressure gradient and pressure difference are increasing functions of inclination angle and Grashof number. The temperature and heat transfer coefficients both increase with increase in inclination angle, Darcy number, Grashof number and Prandtl number. Increase in Hartmann number and phase difference decreases the size of trapped bolus.

Originality/value

The problem is original, as no work has been reported on the effect of magnetohydrodynamics on the peristaltic flow of a Walters B fluid through a porous medium in an inclined asymmetric channel with heat transfer.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 December 2020

Lijun Zhang, Muhammad Mubashir Bhatti and Efstathios E. Michaelides

The purpose of this paper is to examine the electro-magnetohydrodynamic behavior of a third-grade non-Newtonian fluid, flowing between a pair of parallel plates in the presence of…

Abstract

Purpose

The purpose of this paper is to examine the electro-magnetohydrodynamic behavior of a third-grade non-Newtonian fluid, flowing between a pair of parallel plates in the presence of electric and magnetic fields. The flow medium between the plates is porous. The effects of Joule heating and viscous energy dissipation are studied in the present study.

Design/methodology/approach

A semi-analytical/numerical method, the differential transform method, is used to obtain solutions for the system of the nonlinear differential governing equations. This solution technique is efficient and may be adapted to solve a variety of nonlinear problems in simple geometries, as it was confirmed by comparisons between the results using this method and those of a fully numerical scheme.

Findings

The results of the computations show that the Darcy–Brinkman–Forchheimer parameter and the third-grade fluid model parameter retards, whereas both parameters have an inverse effect on the temperature profile because the viscous dissipation increases. The presence of the magnetic field also enhances the temperature profile between the two plates but retards the velocity profile because it generates the opposing Lorenz force. A graphical comparison with previously published results is also presented as a special case of this study.

Originality/value

The obtained results are new and presented for the first time in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 2002

Michele Ciofalo and Fabrizio Cricchio

The buoyancy‐driven magnetohydrodynamic flow in a cubic enclosure was investigated by three‐dimensional numerical simulation. The enclosure was volumetrically heated by a uniform…

Abstract

The buoyancy‐driven magnetohydrodynamic flow in a cubic enclosure was investigated by three‐dimensional numerical simulation. The enclosure was volumetrically heated by a uniform power density and cooled along two opposite vertical walls, all remaining walls being adiabatic. A uniform magnetic field was applied orthogonally to the gravity vector and to the temperature gradient. The Prandtl number was 0.0321 (characteristic of Pb–17Li at 300°C), the Rayleigh number was 104, and the Hartmann number was made to vary between 0 and 2×103. The steady‐state Navier–Stokes equations, in conjunction with a scalar transport equation for the fluid's enthalpy and with the Poisson equation for the electrical potential, were solved by a finite volume method using a purposely modified CFD code and a computational grid with 643 nodes in the fluid. Emphasis was laid on the effects of increasing the Hartmann number on the complex three‐dimensional flow and current pattern.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 December 2017

O.K. Koriko, I.L. Animasaun, M. Gnaneswara Reddy and N. Sandeep

The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm…

107

Abstract

Purpose

The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm alumina-water nanofluid within the thin boundary layer in the presence of quartic autocatalytic kind of chemical reaction effects, and to unravel the effects of a magnetic field parameter, random motion of the tiny nanoparticles and volume fraction on the flow.

Design/methodology/approach

The chemical reaction between homogeneous (Eyring-Powell 36 nm alumina-water) bulk fluid and heterogeneous (three molecules of the catalyst at the surface) in the flow of magnetohydrodynamic three-dimensional flow is modeled as a quartic autocatalytic kind of chemical reaction. The electromagnetic radiation which occurs within the boundary layer is treated as the nonlinear form due to the fact that Taylor series expansion may not give full details of such effects within the boundary layer. With the aid of appropriate similarity variables, the nonlinear coupled system of partial differential equation which models the flow was reduced to ordinary differential equation boundary value problem.

Findings

A favorable agreement of the present results is obtained by comparing it for a limiting case with the published results; hence, reliable results are presented. The concentration of homogeneous bulk fluid (Eyring-Powell nanofluid) increases and decreases with ϕ and Pr, respectively. The increase in the value of magnetic field parameter causes vertical and horizontal velocities of the flow within the boundary layer to decrease significantly. The decrease in the vertical and horizontal velocities of Eyring-Powell nanofluid flow within the boundary layer is guaranteed due to an increase in the value of M. Concentration of homogeneous fluid increases, while the concentration of the heterogeneous catalyst at the wall decreases with M.

Originality/value

Considering the industrial applications of thermal stratification in solar engineering and polymer processing where the behavior of the flow possesses attributes of Eyring-Powell 36 nm alumina-water, this paper presents the solution of the flow problem considering 36 nm alumina nanoparticles, thermophoresis, stratification of thermal energy, Brownian motion and nonlinear thermal radiation. In addition, the aim and objectives of this paper fill such vacuum in the industry.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2005

T.K. Aldoss, M.A. Al‐Nimr and A.F. Khadrawi

The transient hydrodynamics and thermal behavior of free convection flow over an isothermal vertical flat plate is investigated.

Abstract

Purpose

The transient hydrodynamics and thermal behavior of free convection flow over an isothermal vertical flat plate is investigated.

Design/methodology/approach

The study focuses on the role of the local acceleration term in the magnetohydrodynamic (MHD) momentum equation. A finite difference method based on a second‐order differential equation is used to solve the differential equations.

Findings

It is found that the local acceleration term has insignificant effect on the flow behavior especially at large values of magnetic forces. Also, it is found that the effect of the magnetic forces on the flow hydrodynamics behavior is significant but its effect on the thermal behavior is insignificant. It has been realized that the local acceleration term is usually small compared to the magnetic retarding force, and hence can be neglected.

Research limitations/implications

A quantitative description of the operating and geometrical parameters within which the local acceleration term may be significant is not available in the literature yet. Also, the authors' intention is to improve physical understanding of the hydrodynamic and thermal behaviors of the present problem.

Originality/value

The study provides results concerning the thermal behavior of free convection flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2014

S. Abbasbandy, T. Hayat, A. Alsaedi and M.M. Rashidi

– In this paper, analysis is presented to investigate the Falkner-Skan flow of magnetohydrodynamic (MHD) Oldroyd-B fluid. The paper aims to discuss these issues.

Abstract

Purpose

In this paper, analysis is presented to investigate the Falkner-Skan flow of magnetohydrodynamic (MHD) Oldroyd-B fluid. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the authors used two methods: homotopy analysis method and numerical Keller-box method.

Findings

It is observed that skin friction coefficient in Oldroyd-B fluid is larger when compared with viscous fluid. Further, the relaxation and retardation times have opposite effects on the velocity components.

Practical implications

A comparative study between the series and numerical solutions for the skin friction is shown in the paper. The results indicated that both solutions are in well agreement.

Originality/value

This model is investigated for the first time, as the authors know.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 August 2018

Ramadevi B., Sugunamma V., Anantha Kumar K. and Ramana Reddy J.V.

The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform heat…

Abstract

Purpose

The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform heat sink/source.

Design/methodology/approach

The flow governing partial differential equations are transformed into ordinary ones with the help of similarity transformations. The set of ODEs are solved by a shooting technique together with the R.K.–Fehlberg method. Further, the graphs are depicted to scrutinize the velocity, concentration and temperature fields of the Carreau fluid flow. The numerical values of friction factor, heat and mass transfer rates are tabulated.

Findings

The results are presented for both Newtonian and non-Newtonian fluid flow cases. The authors conclude that the nature of three typical fields and the physical quantities are alike in both cases. An increase in melting parameter slows down the velocity field and enhances the temperature and concentration fields. But an opposite outcome is noticed with thermal relaxation parameter. Also the elevating values of thermal relaxation parameter/ wall thickness parameter/Prandtl number inflate the mass and heat transfer rates.

Originality/value

This is a new research article in the field of heat and mass transfer in fluid flows. Cattaneo–Christov heat flux model is used. The surface of the flow is assumed to be melting.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 March 2013

S. Abbasbandy and H. Roohani Ghehsareh

In this paper, an analysis is performed to find the solution of a nonlinear ordinary differential equation that appears in a model for MHD viscous flow caused by a shrinking sheet.

Abstract

Purpose

In this paper, an analysis is performed to find the solution of a nonlinear ordinary differential equation that appears in a model for MHD viscous flow caused by a shrinking sheet.

Design/methodology/approach

The cases of two dimensional and axisymmetric shrinking have been discussed. When the sheet is shrinking in the x‐direction, the analytical solutions are obtained by the Hankel‐Padé method. Comparison to exact solutions reveals reliability and high accuracy of the procedure, even in the case of multiple solutions. The case of sheet shrinking in the y‐direction is also considered, with success.

Findings

When the sheet shrinks in the x‐direction, the analytical solutions are obtained by Hankel‐Padé method. Also, when the sheet shrinks in the y‐direction, the obtained results with Hankel‐Padé method are presented.

Practical implications

Comparison to exact solutions reveals reliability and high accuracy of the procedure and convincingly could be used to obtain multiple solutions for certain parameter domains of this case of the governing nonlinear problem.

Originality/value

The numerical solutions are given for both two‐dimensional and axisymmetric shrinking sheets by using Hankel‐Padé method. It is clear that the Hankel‐Padé method is, by far, more simple, straightforward and gives reasonable results for large Hartman numbers and suction parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 666