Search results

1 – 10 of 86
Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square…

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 September 2023

Ali Akbar Izadi and Hamed Rasam

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…

Abstract

Purpose

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.

Design/methodology/approach

Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.

Findings

Investigating critical parameters such as Darcy number (10−4DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.

Originality/value

Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 3 April 2024

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic…

Abstract

Purpose

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic (MHD) nanofluid flow within these systems.

Design/methodology/approach

The research uses a constraint-based approach to analyze the impact of geometric shapes on heat transfer and irreversibility. Two equivalent systems, a square cavity and a circular cavity, are examined, considering identical heating/cooling lengths and fluid flow volume. The analysis includes parameters such as magnetic field strength, nanoparticle concentration and accompanying irreversibility.

Findings

This study reveals that circular geometry outperforms square geometry in terms of heat flow, fluid flow and heat transfer. The equivalent circular thermal system is more efficient, with heat transfer enhancements of approximately 17.7%. The corresponding irreversibility production rate is also higher, which is up to 17.6%. The total irreversibility production increases with Ra and decreases with a rise in Ha. However, the effect of magnetic field orientation (γ) on total EG is minor.

Research limitations/implications

Further research can explore additional geometric shapes, orientations and boundary conditions to expand the understanding of thermal performance in different configurations. Experimental validation can also complement the numerical analysis presented in this study.

Originality/value

This research introduces a constraint-based approach for evaluating heat transport and irreversibility in MHD nanofluid flow within square and circular thermal systems. The comparison of equivalent geometries and the consideration of constraint-based analysis contribute to the originality and value of this work. The findings provide insights for designing optimal thermal systems and advancing MHD nanofluid flow control mechanisms, offering potential for improved efficiency in various applications.

Graphical Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 February 2024

Sergejs Pavlovs, Andris Jakovičs and Alexander Chudnovsky

The purpose of this paper is the study of the electro-vortex flow (EVF) as well as heating and melting processes for mini industrial direct current electric arc furnace (DC EAF).

Abstract

Purpose

The purpose of this paper is the study of the electro-vortex flow (EVF) as well as heating and melting processes for mini industrial direct current electric arc furnace (DC EAF).

Design/methodology/approach

A mini DC EAF was designed, manufactured and installed to study the industrial processes of heating and melting a small amount of melt, being 4.6 kg of steel in the case under study. Numerical modelling of metal melting was performed using the enthalpy and porosity approach at equal values and non-equal values of the solidus and liquidus temperatures of the metal. The EVF of the liquid phase of metal was computed using the large eddy simulation model of turbulence. Melt temperature measurements were made using an infrared camera and a probe with a thermocouple sensor. The melt speed was estimated by observing the movement of particles at the top surface of melt.

Findings

The thermal flux for metal heating and melting, which is supplied through an arc spot at the top surface of metal, is estimated using the thermal balance of the furnace at melting point. The melting time was estimated using numerical modelling of heating and melting of metal. The process started at room temperature and finished once whole volume of metal was molten. The evolution of the solid/melt phase boundary as well as evolution of EVF patterns of the melt was studied.

Originality/value

Numerical studies of heating and melting processes in metal were performed in the case of intensive liquid phase turbulent circulation due to the Lorentz force in the melt, which results from the interaction of electrical current with a self-magnetic field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 January 2024

Bhupendra Kumar Sharma, Umesh Khanduri, Rishu Gandhi and Taseer Muhammad

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow…

Abstract

Purpose

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow and aneurysm conditions. The findings of this study offer significant insights into the intricate interplay encompassing electro-osmosis, MHD flow, microorganisms, Joule heating and the ternary hybrid nanofluid.

Design/methodology/approach

The governing equations are first non-dimensionalised, and subsequently, a coordinate transformation is used to regularise the irregular boundaries. The discretisation of the governing equations is accomplished by using the Crank–Nicolson scheme. Furthermore, the tri-diagonal matrix algorithm is applied to solve the resulting matrix arising from the discretisation.

Findings

The investigation reveals that the velocity profile experiences enhancement with an increase in the Debye–Hückel parameter, whereas the magnetic field parameter exhibits the opposite effect, reducing the velocity profile. A comparative study demonstrates the velocity distribution in Au-CuO hybrid nanofluid and Au-CuO-GO ternary hybrid nanofluid. The results indicate a notable enhancement in velocity for the ternary hybrid nanofluid compared to the hybrid nanofluids. Moreover, an increase in the Brinkmann number results in an augmentation in entropy generation.

Originality/value

This study investigates the flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, MHD flow and aneurysm conditions. The governing equations are non-dimensionalised, and a coordinate transformation is applied to regularise the irregular boundaries. The Crank–Nicolson scheme is used to model blood flow in the presence of a ternary hybrid nanofluid (Au-CuO-GO/blood) within the arterial domain. The findings shed light on the complex interactions involving stenosis, MHD flow, aneurysms, Joule heating and the ternary hybrid nanofluid. The results indicate a decrease in the wall shear stress (WSS) profile with increasing stenosis size. The MHD effects are observed to influence the velocity distribution, as the velocity profile exhibits a declining nature with an increase in the Hartmann number. In addition, entropy generation increases with an enhancement in the Brinkmann number. This research contributes to understanding fluid dynamics and heat transfer mechanisms in bifurcated arteries, providing valuable insights for diagnosing and treating cardiovascular diseases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2024

Anup Kumar, Bhupendra Kumar Sharma, Bandar Bin-Mohsen and Unai Fernandez-Gamiz

A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach…

Abstract

Purpose

A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach their energy needs in areas where traditional fuels are in use. This study aims to examine the sensitivity analysis for optimizing the heat transfer and entropy generation in the Jeffrey magnetohydrodynamic hybrid nanofluid flow under the influence of motile gyrotactic microorganisms with solar radiation in the parabolic trough solar collectors. The influences of viscous dissipation and Ohmic heating are also considered in this investigation.

Design/methodology/approach

Governing partial differential equations are derived via boundary layer assumptions and nondimensionalized with the help of suitable similarity transformations. The resulting higher-order coupled ordinary differential equations are numerically investigated using the Runga-Kutta fourth-order numerical approach with the shooting technique in the computational MATLAB tool.

Findings

The numerical outcomes of influential parameters are presented graphically for velocity, temperature, entropy generation, Bejan number, drag coefficient and Nusselt number. It is observed that escalating the values of melting heat parameter and the Prandl number enhances the Nusselt number, while reverse effect is observed with an enhancement in the magnetic field parameter and bioconvection Lewis number. Increasing the magnetic field and bioconvection diffusion parameter improves the entropy and Bejan number.

Originality/value

Nanotechnology has captured the interest of researchers due to its engrossing performance and wide range of applications in heat transfer and solar energy storage. There are numerous advantages of hybrid nanofluids over traditional heat transfer fluids. In addition, the upswing suspension of the motile gyrotactic microorganisms improves the hybrid nanofluid stability, enhancing the performance of the solar collector. The use of solar energy reduces the industry’s dependency on fossil fuels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 February 2024

Ahmed Jan, Muhammad F. Afzaal, Muhammad Mushtaq, Umer Farooq and Muzammil Hussain

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Abstract

Purpose

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Design/methodology/approach

The transport equations are transformed into nondimensional partial differential equations. The local nonsimilarity (LNS) technique is implemented to truncate nonsimilar dimensionless system. The LNS truncated equation can be treated as ordinary differential equations. The numerical results of the equation are accomplished through the implementation of the bvp4c solver, which leverages the fourth-order three-stage Lobatto IIIa formula as a finite difference scheme.

Findings

The findings of a comparative investigation carried out under diverse physical limitations demonstrate that ternary HNFs exhibit remarkably elevated thermal efficiency in contrast to conventional nanofluids.

Originality/value

The LNS approach (Mahesh et al., 2023; Khan et al., 20223; Farooq et al., 2023) that we have proposed is not currently being used to clarify the dynamical issue of HNF via porous media. The LNS method, in conjunction with the bvp4c up to its second truncation level, yields numerical solutions to nonlinear-coupled PDEs. Relevant results of the topic at hand, obtained by adjusting the appropriate parameters, are explained and shown visually via tables and diagrams.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 April 2023

Amr M. Mahros, Emad H. Aly, John H. Merkin and Ioan M. Pop

This paper aims to study the magnetohydrodynamic (MHD) wall jet of a hybrid nanofluid flow over a moving surface with a thermally convective surface, wall moving with…

Abstract

Purpose

This paper aims to study the magnetohydrodynamic (MHD) wall jet of a hybrid nanofluid flow over a moving surface with a thermally convective surface, wall moving with suction/injection.

Design/methodology/approach

On using appropriate similarity transformations, the governing equations that describe the model are converted into a system of nonlinear ordinary differential equations. These equations are solved both analytically and numerically using standard two-point boundary-value problem solvers and Chebyshev pseudospectral differentiation matrix method, respectively.

Findings

These results show that the HNF is heating/cooling with growth of the positive/negative values of the parameter measuring the velocity of the moving surface. The temperature distributions increase, where the thermal boundary layer gets thicker, as the magnetic field strengthens and with an increase in the absolute value of the Biot number.

Originality/value

The current findings for the HNFs are new and original. They generalize successfully the problems investigated previously by different researchers for the cases of fluids and also nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 November 2022

Jinxia Jiang, Haojie Zhao and Yan Zhang

This study aims to investigate the two-dimensional magnetohydrodynamic flow and heat transfer of a fractional Maxwell nanofluid between inclined cylinders with variable thickness…

Abstract

Purpose

This study aims to investigate the two-dimensional magnetohydrodynamic flow and heat transfer of a fractional Maxwell nanofluid between inclined cylinders with variable thickness. Considering the cylindrical coordinate system, the constitutive relation of the fractional viscoelastic fluid and the fractional dual-phase-lag (DPL) heat conduction model, the boundary layer governing equations are first formulated and derived.

Design/methodology/approach

The newly developed finite difference scheme combined with the L1 algorithm is used to numerically solve nonlinear fractional differential equations. Furthermore, the effectiveness of the algorithm is verified by a numerical example.

Findings

Based on numerical analysis, the effects of parameters on velocity and temperature are revealed. Specifically, the velocity decreases with the increase of the fractional derivative parameter α owing to memory characteristics. The temperature increase with the increase of fractional derivative parameter ß due to a decrease in thermal resistance. From a physical perspective, the phase lag of the heat flux vector and temperature gradients τq and τT exhibit opposite trends to the temperature. The ratio τT/τq plays an important role in controlling different heat conduction behaviors. Increasing the inclination angle θ, the types and volume fractions of nanoparticles Φ can increase velocity and temperature, respectively.

Originality/value

Fractional Maxwell nanofluid flows from a fixed-thickness pipe to an inclined variable-thickness pipe, and the fractional DPL heat conduction model based on materials is considered, which provides a basis for the safe and efficient transportation of high-viscosity and condensable fluids in industrial production.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 86