Search results

1 – 4 of 4
Article
Publication date: 13 June 2016

Rajneesh Kumar, Kulwinder Singh and Devinder Pathania

The purpose of this paper is to investigate a two dimensional problem in magneto-micropolar thermoelastic half-space with fractional order derivative in the presence of combined…

Abstract

Purpose

The purpose of this paper is to investigate a two dimensional problem in magneto-micropolar thermoelastic half-space with fractional order derivative in the presence of combined effects of hall current and rotation subjected to ramp-type heating.

Design/methodology/approach

The fractional order theory of thermoelasticity with one relaxation time derived by Sherief et al. (2010) has been used to investigate the problem. Laplace and Fourier transform technique has been used to solve the resulting non-dimensional coupled field equations to obtain displacement, stress components and temperature distribution. A numerical inversion technique has been applied to obtain the solution in the physical domain.

Findings

Numerical computed results of all the considered variables have been shown graphically to depict the combined effect of hall current and rotation. Some particular cases of interest are also deduced from the present study.

Originality/value

Comparison are made in the presence and absence of hall current and rotation in a magneto-micropolar thermoelastic solid with fractional order derivative.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2007

Rajneesh Kumar and Rupender

The present investigation is concerned with a two‐dimensional problem in electromagnetic micropolar elasticity for a half‐space whose surface is subjected to mechanical or thermal…

Abstract

The present investigation is concerned with a two‐dimensional problem in electromagnetic micropolar elasticity for a half‐space whose surface is subjected to mechanical or thermal source in the presence of a transverse magnetic field. Laplace and Fourier transform technique is used to solve the problem. As an application of the approach concentrated/continuous mechanical or thermal source has been taken. The integral transforms have been inverted by using a numerical technique to obtain the components of normal strain, temperature distribution, normal force stress and tangential couple stress in the physical domain. The expressions of these quantities have been given and illustrated graphically to depict the magnetic effect for two different theories of generalized thermoelasticity, Lord and Shulman (L‐S theory) and Green and Lindsay (G‐L theory). Some special cases of interest are also deduced from the present investigation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 October 2014

Mohamed I.A. Othman, W.M. Hasona and Elsayed M. Abd-Elaziz

The purpose of this paper is to introduce the coupled theory, Lord-Shulman theory with one relaxation time and Green-Lindsay theory with two relaxation times to study the…

Abstract

Purpose

The purpose of this paper is to introduce the coupled theory, Lord-Shulman theory with one relaxation time and Green-Lindsay theory with two relaxation times to study the influence of rotation on generalized micropolar thermoelasticity subject to thermal loading due to laser pulse. The bounding plane surface is heated by a non-Gaussian laser beam with pulse duration of 8 ps.

Design/methodology/approach

The problem has been solved numerically by using the normal mode analysis.

Findings

The thermal shock problem is studied to obtain the exact expressions for the displacement components, force stresses, temperature, couple stresses and micro-rotation. The distributions of the considered variables are illustrated graphically. Comparisons are made with the results predicted by three theories in the presence and absence of laser pulse and for different values of time.

Originality/value

Generalized micropolar thermoelastic solid.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 August 2017

Mohamed Ibrahim A. Othman and Mohamed Ibrahim M. Hilal

The purpose of this paper is to study the effect of rotation and initial stress on magneto-thermoelastic material with voids heated by a laser pulse heating.

Abstract

Purpose

The purpose of this paper is to study the effect of rotation and initial stress on magneto-thermoelastic material with voids heated by a laser pulse heating.

Design/methodology/approach

The analytical method used was the normal mode analysis technique.

Findings

Numerical results for the physical quantities were presented graphically and analyzed. The graphical results indicate that the effect of rotation, initial stress and magnetic fields are observable physical effects on the thermoelastic material with voids heated by a laser pulse. Comparisons are made with the results in the absence and the presence of the physical operators, also at various times.

Originality/value

In the present work, the authors shall investigate the effect of the rotation, initial stress, magnetic field and laser pulse on thermoelastic material with voids subjected to a laser pulse heating acting as a thermal shock. A comparison is also made between the two types (types II and III) of Green-Naghdi theory in the absence and the presence of the physical operators. Such problems are very important in many dynamical systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 4 of 4