Search results

1 – 10 of 23
Article
Publication date: 5 March 2018

Young Hyun Kim and Jung Ho Lee

This study aims to propose criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing…

Abstract

Purpose

This study aims to propose criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing high-cogging torque and torque ripple, to prevent noise and vibration.

Design/methodology/approach

The optimal design of the stator and rotor can be enhanced using both a response surface method (RSM) and finite element method (FEM). In addition, a magnetizer system is optimally designed for the magnetization of permanent magnets for use in the motor.

Findings

The criteria not only improve performance but also reduce manufacturing costs. The criteria are verified FEM together with an RSM. These methods are used to optimize the stator and rotor shape and the magnetization system. These methods allow us to produce an efficient system for mass production of the motor.

Originality/value

This study proposed a design method that uses rare earth magnets in a system to replace the spoke-type IPM. To verify the optimal design, torque characteristics were analysed using FEM and RSM. Excellent results were achieved regarding the reduction of cogging torque and torque ripple. In addition, the design of the magnetizer enables a cost-effective mass production system for the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 1998

Z. Zycki and K. Pawluk

The current pulse magnetizing process of permanent magnets is considered. General conditions for the design of a pulse magnetizer are given for the case when the magnetizing…

612

Abstract

The current pulse magnetizing process of permanent magnets is considered. General conditions for the design of a pulse magnetizer are given for the case when the magnetizing process is effected on the magnet put in free space. The boundary‐integral analysis of the magnetic field inside the magnet is presented. It concerns both the state corresponding to the maximum value of the magnetizing current pulse and the magnetized state after the full magnetizing.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 17 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 September 2016

Tong Feng, Shuanghui Hao, Minghui Hao and Jianli Wang

As a type of angular displacement sensor, the Hall-effect magnetic encoder incorporates many advantages. While compared with the photoelectric encoder, the magnetic encoder…

Abstract

Purpose

As a type of angular displacement sensor, the Hall-effect magnetic encoder incorporates many advantages. While compared with the photoelectric encoder, the magnetic encoder nevertheless has lower precision and lower resolution. So, the purpose of this essay is to find a way to increase the precision and resolution of the magnetic encoder.

Design/methodology/approach

By combining a single-pole magnetic encoder and a multi-pole AlNiCo magnet, the precision and resolution of this combined magnetic encoder are increased without increasing its volume or complicating its structure. A special algorithm system is developed to ensure faithful encoding and decoding.

Findings

Tests show that the combined magnetic encoder, with a diameter of 67.12 mm (including shaft) and thickness of 6.9 mm, has a precision of ±6′, compared with a 15-bit photoelectric encoder and a static resolution of ±0.6′.

Originality/value

This new kind of magnetic encoder could be used in specialized fields which need high-precision servo-control systems that are small, have ultra-low-speed and high-speed ratios and are non-oil-polluting or shock-resistant.

Details

Sensor Review, vol. 36 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 June 2016

Lei Wang, Yongde Zhang, Shuanghui Hao, Baoyu Song, Minghui Hao and Zili Tang

To eliminate the angle deviation of magnetic encoder, this paper aims to propose a compensation method based on permanent magnet synchronous motor (PMSM) sensorless control. The…

Abstract

Purpose

To eliminate the angle deviation of magnetic encoder, this paper aims to propose a compensation method based on permanent magnet synchronous motor (PMSM) sensorless control. The paper also describes the experiments performed to verify the validity of this proposed method.

Design/methodology/approach

The proposed method uses PMSM sensorless control method to get high precision virtual angle value, and then get the deviation value between virtual position and magnetic angle which is used as compensation table. Oversampling linear interpolation tabulation method has been proposed to eliminate the noise signals. Finally, a magnetic encoder with precision (repeatability) 0.09° and unidirectional motion precision 0.03 is realized. The control system with an encoder running at 14,000 and 0.01 r/min showing high motion resolution is also realized.

Findings

Higher value of current in PMSM leads to a magnetic encoder with higher precision. When using oversampling linear interpolation to tabulate the compensation table, it is understood that more oversampling does not lead to a better result. Finally, validated by experiments, using eight intervals to calculate the mean value of angle deviation leads to the best result.

Practical implications

The angle deviation compensation method proposed in this paper has a great practical implication and a good commercial application. The method proposed in this paper could be effectively used to self-correct the magnetic encoder using arctangent method and also correct any rotary encoder sensor.

Originality/value

This paper originally proposes an adaptive correction method for a rotary encoder based on PMSM sensorless control. To eliminate the noise signals in an angle compensation table, over-sampling linear interpolation tabulation method has been proposed which also guarantees the precision of the compensation table.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 January 2016

Cuo Wang, Xingfei Li, Ke Kou and Chunguo Long

This study aims to ameliorate the strength and uniformity of the magnetic field in the air-gap of quartz flexible accelerometers. Quartz flexible accelerometers (QFAs), a type of…

Abstract

Purpose

This study aims to ameliorate the strength and uniformity of the magnetic field in the air-gap of quartz flexible accelerometers. Quartz flexible accelerometers (QFAs), a type of magneto-electric inertial sensors, have wide applications in inertial navigation systems, and their precision, linearity and stability performance are largely determined by the magnetic field in operation air-gap. To enhance the strength and uniformity of the magnetic field in the air-gap, a magnetic hat structure has been proposed to replace the traditional magnetic pole piece which tends to produce stratiform magnetic field distribution.

Design/methodology/approach

Three-dimensional analysis in ANSYS workbench helps to exhibit magnetic field distribution for the structures with a pole piece and a magnetic hat, and under the hypothesis of cylindrical symmetry, two-dimensional finite element optimization by ANSYS APDL gives an optimal set of dimensions of the magnetic hat.

Findings

Three structures of the QFA with a pole piece, a non-optimized magnetic hat and an optimized magnetic hat are compared by the simulation in ANSYS Maxwell and experiments measuring the electromagnetic rebalance force. The results show that the optimized hat can supply stronger and more uniform magnetic field, which is reflected by larger and more linear rebalance force.

Originality/value

To the authors ' knowledge, the magnetic hat and its dimension optimization have rarely been reported, and they can find significant applications in designing QFAs or other similar magnetic sensors.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 September 1999

J.A. Gallardo and D.A. Lowther

The use of niching genetic algorithms can provide a method of a more widespread search of the design space for a device than more conventional methods. It provides, in effect, a…

Abstract

The use of niching genetic algorithms can provide a method of a more widespread search of the design space for a device than more conventional methods. It provides, in effect, a breadth first rather than a depth first search. Thus several alternative designs may be evaluated in parallel.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2001

K. Rashid, M. Farina, J.A. Ramirez, J.K. Sykulski and E.M. Freeman

When dealing with problems entailing time consuming finite element solutions alternative methods are sought which can reduce the number of function calls whilst preserving…

Abstract

When dealing with problems entailing time consuming finite element solutions alternative methods are sought which can reduce the number of function calls whilst preserving solution accuracy. Two different strategies for practical electromagnetic design and optimisation are presented and compared. The main features and performance of each are described and evaluated on an analytical and a physical problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 1945

The Avery 64/1416 Brinell hardness testing machine has been designed to meet the dual demands of modern process control and scientific investigation. Other tests requiring a high…

Abstract

The Avery 64/1416 Brinell hardness testing machine has been designed to meet the dual demands of modern process control and scientific investigation. Other tests requiring a high degree of precision or repetition tests for control purposes can be carried out on the same standard machine. It is claimed to be a great advance on the usual type of hardness testing machine. Consistent conditions can be maintained in any series of tests; as the machine is power operated, the load is applied at a controlled rate, and the rate of loading is adjustable.

Details

Aircraft Engineering and Aerospace Technology, vol. 17 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 1992

N A Al‐Anani and Jewell D GW Howe

Due to their high magnetizing field requirement, the emergence of rare‐earth based permanent magnets is creating onerous demands on the capacitor‐discharge systems which are used…

Abstract

Due to their high magnetizing field requirement, the emergence of rare‐earth based permanent magnets is creating onerous demands on the capacitor‐discharge systems which are used for their initial magnetization, a process which is aggravated by the fact that the transient current pulse induces eddy currents, which inhibit the penetration of the magnetizing field, and causes heating and stressing of the magnetizing fixture. The problems are compounded in multi‐pole and post‐assembly magnetization systems, particularly for fine pole‐pitch fields. However this paper concentrates on the pre‐magnetization of magnets in air‐cored solenoids, which, despite the difficulty in subsequently handling magnetized magnets, remains the most common requirement. It presents a methodology for the design of impulse magnetizing solenoids to produce the amplitude and time to peak of magnetizing field required for a specific generic type and aspect ratio of magnet to be magnetized, and describes a procedure for the subsequent analysis of the complete impulse magnetization system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 8 July 2021

Abbas Hashemizadeh and Mohammad Javad Ameri

This study aims to describe the effect of magnetic field (MF) on the corrosion rate of N-80 carbon steel [N-80 carbon steel (CS)] in concentrated (12.5 Wt.%, 3.8 M) hydrochloric…

Abstract

Purpose

This study aims to describe the effect of magnetic field (MF) on the corrosion rate of N-80 carbon steel [N-80 carbon steel (CS)] in concentrated (12.5 Wt.%, 3.8 M) hydrochloric acid (HCl) using gravimetric weight loss (WL) measurements and potentiodynamic polarization (PDP) in various conditions at ambient temperature.

Design/methodology/approach

The effects of MF intensity, magnetization time and elapsed time on corrosion rate (CR) reduction (η) were studied.

Findings

The experimental results show that pre-magnetization of HCl sharply decreases the corrosion rate of N-80 carbon steel (CS) in acid. The maximum η was found to be 94%. The surface of CS was analyzed with scanning electron microscope in normal and magnetized acid.

Originality/value

To the best of the authors’ knowledge, no studies have delved into the effects of magnetization on the corrosion rate of CS in concentrated HCl solutions. All of the previous research studies deal with an external MF that is applied on the reaction cell, but the magnetization of fluid before coming in contact with CS is investigated for the first time. In the present work, the influence of MF on the corrosion rate of CS in HCl is illustrated using gravimetric WL and PDP methods. The effects of MF intensity as well as period of magnetization and elapsed time were verified in more than 35 tests.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 23