Search results

1 – 10 of over 1000
Article
Publication date: 4 January 2016

Xiayu Zheng, Yuhua Wang and Dongfang Lu

The purpose of this paper is to model the particle capture of elliptic magnetic matrices for parallel stream type high magnetic separation, which can be a guidance for the…

179

Abstract

Purpose

The purpose of this paper is to model the particle capture of elliptic magnetic matrices for parallel stream type high magnetic separation, which can be a guidance for the development of novel elliptic cylinder matrices for high-gradient magnetic separation (HGMS).

Design/methodology/approach

The magnetic field distribution around the elliptic matrices is investigated quantitatively and the magnetic field and gradient were calculated. The motion equations of the magnetic particles around the matrices were derived and the particle capture cross-section of elliptic matrices was studied and was compared with that of the conventional circular matrices.

Findings

Elliptic matrices can present larger particle capture cross-section than the conventional circular matrices and can be a kind of promising matrices to be applied to HGMS.

Originality/value

There is little literature investigating the magnetic characteristics and the particle capture of the elliptic matrices in HGMS, the study is of great significance for the development of novel elliptic magnetic matrices in HGMS.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Chiara Caterina Borghi, Yoko Akiyama, Massimo Fabbri, Shigehiro Nishijima and Pier Luigi Ribani

The aim of this paper is the study of the magnetic separation of pollutants from water by means of a magnetic filter. A magnetic activated carbons nanometric powder that combines…

Abstract

Purpose

The aim of this paper is the study of the magnetic separation of pollutants from water by means of a magnetic filter. A magnetic activated carbons nanometric powder that combines the well-known pollutants absorbent capacity of activated carbons with the magnetic properties of magnetite (Fe3O4) is used.

Design/methodology/approach

The considered magnetic filter is made of stainless steel spheres, magnetized by an external flux density field provided by permanent magnets. Flux density and fluid velocity fields are evaluated using volume integral equation method. The modelling of the particles trajectories inside the filter allows calculating its capture efficiency.

Findings

The results of the model are tested on the experimental data obtained using two different setups. A removal of the powder larger than 90 percent is achieved in both cases. The pollutant removal efficiency is checked on surfactants (water diluted). Their adsorption on magnetic activated carbons leads to residual concentration below the limit for the reuse in agriculture (according to the Italian legislation) for all the tested surfactants.

Originality/value

The proposed process combines efficiently a physico-chemical phase of adsorption and a magnetic phase of filtration due to the particular properties of magnetic activated carbons.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 February 2021

Ibrahim A. Amar, Jawaher O. Asser, Amina S. Mady, Mabroukah S. Abdulqadir, Fatima A. Altohami, Abubaker A. Sharif and Ihssin A. Abdalsamed

The main purpose of this paper is to investigate the adsorption properties of CoFe1.9Mo0.1O4 magnetic nanoparticles (CFMo MNPs) using, anionic dye “congo red (CR)” as a model of…

Abstract

Purpose

The main purpose of this paper is to investigate the adsorption properties of CoFe1.9Mo0.1O4 magnetic nanoparticles (CFMo MNPs) using, anionic dye “congo red (CR)” as a model of water pollutants.

Design/methodology/approach

The magnetic nano-adsorbent was synthesized via sol-gel process. Different techniques including; Fourier transform infrared spectroscopy, point of zero charge, scanning electron microscope and X-ray powder diffraction were used to characterize the prepared adsorbent. Adsorption experiments were conducted in batch mode under various conditions (contact time, shaking speed, initial dye concentration, initial solution pH, solution temperature and adsorbent amount) to investigate the adsorption capability of CFMo MNPs for CR.

Findings

The results showed that, CFMo MNPs could successfully remove more than 90% of CR dye within 20 min. Adsorption kinetics and isotherms were better described using pseudo-second-order (PSO) and Langmuir models, respectively. The maximum adsorbed amount (qmax) of CR dye was 135.14 mg/g. The adsorption process was found to be endothermic and spontaneous in nature as demonstrated by the thermodynamics ( ΔGo, ΔHoand ΔSo).

Practical implications

This study provided a good example of using an easily separated magnetic nano-adsorbent for fast removal of a very toxic organic pollutant, congo red, from the aquatic environment

Originality/value

The employment of Mo-doped cobalt ferrite for the first time for removing hazardous anionic dyes such as congo red from their aqueous solutions.

Details

Pigment & Resin Technology, vol. 50 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 December 2021

Tanmay Ilame and Arpita Ghosh

Water is a vital natural resource without which life on earth would be impossible. Properties of synthetic dyes like high stability and noxious nature make it difficult to remove…

Abstract

Purpose

Water is a vital natural resource without which life on earth would be impossible. Properties of synthetic dyes like high stability and noxious nature make it difficult to remove them from the effluent. This review focuses on the removal of synthetic dyes using nanoparticles (NPs) based on the adsorption principle.

Design/methodology/approach

Adsorption technique is widely used to remove synthetic dyes from their aqueous solution for decades. Synthetic dye removal using NPs is promising, less energy-intensive and has become popular in recent years. NPs are in high demand for treating wastewater using the adsorption principle due to their tiny size and vast surface area. To maximise environmental sustainability, the utilisation of green-produced NPs as efficient catalysts for dye removal has sparked attention amongst scientists.

Findings

This review has prioritised research and development of optimal dye removal systems that can be used to efficiently remove a large quantity of dye in a short period while safeguarding the environment and producing fewer harmful by-products. The removal efficiency of synthetic dye using different NPs in wastewater treatment varies mostly between 75% to almost 100%. This review will aid in the scaling up of the wastewater treatment process.

Research limitations/implications

There is a lack of research emphasis on the safe disposal of NPs once the reuse efficiency significantly drops. The relevance of cost analysis is equally critical, yet only a few papers discuss cost-related information.

Originality/value

Comprehensive and planned research in this area can aid in the development of long-term wastewater treatment technology to meet the growing need for safe and reliable water emphasising reuse and desorption efficiency of the NPs.

Details

Management of Environmental Quality: An International Journal, vol. 33 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 5 March 2018

Min Li, Arber Caushaj, Rodrigo Silva and David Lowther

This paper aims to presents a novel application of neural network (NN) pattern recognition to ore rock sorting using inductive electromagnetic (EM) sensors.

Abstract

Purpose

This paper aims to presents a novel application of neural network (NN) pattern recognition to ore rock sorting using inductive electromagnetic (EM) sensors.

Design/methodology/approach

The impedance of a metallic rock can be measured with an inductive method based on Faraday’s law and eddy current theory. A virtual rock model is then created for the simulation of the EM measurements. An NN is trained to differentiate between waste and useful ore samples (containing high amount of minerals) based on the EM sensor signals produced by the rocks.

Findings

The NN solution showed high accuracy of rock classification and produced relatively robust results from signals with noise.

Originality/value

A pattern recognition NN was applied to classify low- and high-grade ore samples. It has the potential to determine the approximate amount of conductive materials inside ore rocks through multiple classes. This method can be used to improve the performance of EM-based ore sorting for mineral pre-concentration.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Rtibi Ahmed, Hasnaoui Mohammed and Amahmid Abdelkhalk

The purpose of this paper is to study analytically and numerically the effect of a transverse magnetic field on the separation of species induced in an inclined rectangular porous…

Abstract

Purpose

The purpose of this paper is to study analytically and numerically the effect of a transverse magnetic field on the separation of species induced in an inclined rectangular porous cavity saturated with an electrically conducting mixture.

Design/methodology/approach

The porous layer is assumed homogeneous and submitted from its long sides to uniform heat fluxes and to a magnetic field of strength B. The Darcy model combined with the Boussinesq approximation are used to study the heat and solute transfer in the medium. An analytical solution is developed on the basis of the parallel flow approximation. Numerical simulations are also performed in order to validate the analytical solution. The controlling parameters of this problem are the thermal Rayleigh number, the inclination of the enclosure, the separation parameter, the Hartmann number and the Lewis number.

Findings

For given values of the thermal Rayleigh number, the inclination of the enclosure, the separation parameter and the Lewis number, there is an optimal magnetic field which leads to a maximum of separation. At relatively high Rayleigh numbers, where convection destroys the separation process, it is possible, with an optimal choice of the Hartman number, to recover a good level of separation.

Research limitations/implications

Since the problem is governed by several parameters (five parameters), only the Darcy model was used in this study instead of the Darcy-Brinkman extended model even if the latter model allows to cover the pure fluid and Darcy porous media as limiting cases.

Practical implications

In separation experiments, it is very difficult technically to work with small Rayleigh numbers due to technical difficulties. However, the process of separations is canceled at high Rayleigh number by the strength of convection which causes a mixing in the binary mixture. This study shows that, by using adequate combinations of the controlling parameters, it becomes possible to reach a good level of separation even at relatively high Rayleigh numbers.

Originality/value

Optimum choice of the magnetic field and the inclination of the cavity may lead to a good level of the separation process. For large Lewis numbers, the separation vanishes far above and far below the optimal Ha. However, for small Lewis numbers, an important level of separation is maintained for any Ha located below the optimal value of the latter parameter.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields…

Abstract

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields. Looks at the coupling of fields in a device or a system as a prescribed effect. Points out that there are 12 contributions included ‐ covering magnetic levitation or induction heating, superconducting devices and possible effects to the human body due to electric impressed fields.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2014

Nguyen Dang Manh, Anton Evgrafov, Jens Gravesen and Domenico Lahaye

The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed…

Abstract

Purpose

The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently, a new separator design has been proposed that significantly reduces the required amount of permanent magnet material. The purpose of this paper is to alleviate the undesired end-effects in this design by altering the shape of the ferromagnetic covers of the individual poles.

Design/methodology/approach

The paper represents the shape of the ferromagnetic pole covers with B-splines and defines a cost functional that measures the non-uniformity of the magnetic field in an area above the poles. The authors apply an iso-geometric shape optimization procedure, which allows us to accurately represent, analyze and optimize the geometry using only a few design variables. The design problem is regularized by imposing constraints that enforce the convexity of the pole cover shapes and is solved by a non-linear optimization procedure. The paper validates the implementation of the algorithm using a simplified variant of the design problem with a known analytical solution. The algorithm is subsequently applied to the problem posed.

Findings

The shape optimization attains its target and yields pole cover shapes that give rise to a magnetic field that is uniform over a larger domain.

Research limitations/implications

This increased magnetic field uniformity is obtained at the cost of a pole cover shape that differs per pole. This limitation has negligible impact on the manufacturing of the separator. The new pole cover shapes therefore lead to improved performance of the density separation.

Practical implications

Due to the larger uniformity the generated field, these shapes should enable larger amounts of waste to be processed than the previous design.

Originality/value

This paper treats the shapes optimization of magnetic density separators systematically and presents new shapes for the ferromagnetic poles covers.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2022

Changgeng Zhang, Lan Yang and Yongjian Li

The purpose of this study is to investigate the effect of punching on the local magnetic properties of the nonoriented electrical steel sheet.

Abstract

Purpose

The purpose of this study is to investigate the effect of punching on the local magnetic properties of the nonoriented electrical steel sheet.

Design/methodology/approach

A microcomposite B–H sensor consisting of a pair of B probes with a spacing of 2 mm and a 1.8 × 1.8 mm2 H coil is designed. The region and degree of local magnetic properties degradation caused by punching can be quantitatively analyzed by flexibly moving the composite B–H sensor. The influence and physical mechanism of punching on the hysteresis loss, eddy current loss and excess loss are analyzed based on the Bertotti loss separation theory.

Findings

This study investigates the deterioration effect of the punched nonoriented electrical steel. The permeability near the edge decreases, and the core loss as well as the microhardness increases. The region of magnetic property deterioration is dependent on the area of work hardening.

Originality/value

The microcomposite B–H sensor can be used to measure the magnetic properties near the edge of electrical steel sheets under different processing conditions. This study provides the possibility of precise magnetic property model of the motor core after punching, especially valuable for motors without annealing process.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2003

Fabrizio Colli, Massimo Fabbri, Francesco Negrini, Shigeo Asai and Kensuke Sassa

The analysis of particles trajectories in a vertical cylindrical coil shows that the magnetization force acting on paramagnetic particles has predominantly axial component which…

Abstract

The analysis of particles trajectories in a vertical cylindrical coil shows that the magnetization force acting on paramagnetic particles has predominantly axial component which aims upwards and opposite to the gravitational force. In case of superconducting coil and depending on the value of the particle susceptibility, the axial force component can exceed several times the force of gravity. As a result, a motion of the particles in vertical upward direction appears. This effect was utilized to realize a magnetic separator, the main advantage of which is the high effectivity of separation process. A NbTi SC coil generates the magnetization force with a flux density field up to 12 T. Experiments with SiC inclusions in molten Aluminium have been performed to confirm the feasibility of this segregation concept.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000