Search results

1 – 10 of 14
Article
Publication date: 8 February 2021

Ibrahim A. Amar, Jawaher O. Asser, Amina S. Mady, Mabroukah S. Abdulqadir, Fatima A. Altohami, Abubaker A. Sharif and Ihssin A. Abdalsamed

The main purpose of this paper is to investigate the adsorption properties of CoFe1.9Mo0.1O4 magnetic nanoparticles (CFMo MNPs) using, anionic dye “congo red (CR)” as a model of…

Abstract

Purpose

The main purpose of this paper is to investigate the adsorption properties of CoFe1.9Mo0.1O4 magnetic nanoparticles (CFMo MNPs) using, anionic dye “congo red (CR)” as a model of water pollutants.

Design/methodology/approach

The magnetic nano-adsorbent was synthesized via sol-gel process. Different techniques including; Fourier transform infrared spectroscopy, point of zero charge, scanning electron microscope and X-ray powder diffraction were used to characterize the prepared adsorbent. Adsorption experiments were conducted in batch mode under various conditions (contact time, shaking speed, initial dye concentration, initial solution pH, solution temperature and adsorbent amount) to investigate the adsorption capability of CFMo MNPs for CR.

Findings

The results showed that, CFMo MNPs could successfully remove more than 90% of CR dye within 20 min. Adsorption kinetics and isotherms were better described using pseudo-second-order (PSO) and Langmuir models, respectively. The maximum adsorbed amount (qmax) of CR dye was 135.14 mg/g. The adsorption process was found to be endothermic and spontaneous in nature as demonstrated by the thermodynamics ( ΔGo, ΔHoand ΔSo).

Practical implications

This study provided a good example of using an easily separated magnetic nano-adsorbent for fast removal of a very toxic organic pollutant, congo red, from the aquatic environment

Originality/value

The employment of Mo-doped cobalt ferrite for the first time for removing hazardous anionic dyes such as congo red from their aqueous solutions.

Details

Pigment & Resin Technology, vol. 50 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 December 2021

Tanmay Ilame and Arpita Ghosh

Water is a vital natural resource without which life on earth would be impossible. Properties of synthetic dyes like high stability and noxious nature make it difficult to remove…

Abstract

Purpose

Water is a vital natural resource without which life on earth would be impossible. Properties of synthetic dyes like high stability and noxious nature make it difficult to remove them from the effluent. This review focuses on the removal of synthetic dyes using nanoparticles (NPs) based on the adsorption principle.

Design/methodology/approach

Adsorption technique is widely used to remove synthetic dyes from their aqueous solution for decades. Synthetic dye removal using NPs is promising, less energy-intensive and has become popular in recent years. NPs are in high demand for treating wastewater using the adsorption principle due to their tiny size and vast surface area. To maximise environmental sustainability, the utilisation of green-produced NPs as efficient catalysts for dye removal has sparked attention amongst scientists.

Findings

This review has prioritised research and development of optimal dye removal systems that can be used to efficiently remove a large quantity of dye in a short period while safeguarding the environment and producing fewer harmful by-products. The removal efficiency of synthetic dye using different NPs in wastewater treatment varies mostly between 75% to almost 100%. This review will aid in the scaling up of the wastewater treatment process.

Research limitations/implications

There is a lack of research emphasis on the safe disposal of NPs once the reuse efficiency significantly drops. The relevance of cost analysis is equally critical, yet only a few papers discuss cost-related information.

Originality/value

Comprehensive and planned research in this area can aid in the development of long-term wastewater treatment technology to meet the growing need for safe and reliable water emphasising reuse and desorption efficiency of the NPs.

Details

Management of Environmental Quality: An International Journal, vol. 33 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 27 April 2022

Aung Than Htwe, Min Thet Maung Maung and Zaw Naing

The purpose of this paper is to focus on the removal of copper(II) ions from aqueous model salt solution by using chitosan-coated magnetite nanoparticles.

126

Abstract

Purpose

The purpose of this paper is to focus on the removal of copper(II) ions from aqueous model salt solution by using chitosan-coated magnetite nanoparticles.

Design/methodology/approach

The chitosan-coated magnetite nanoparticles were characterized using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric differential thermal analysis. The adsorption of Cu(II) by using magnetite nanoparticles as an adsorbent was investigated under different adsorption conditions. The parameters studied were contact time, adsorbent dose and initial concentrations.

Findings

The sorption capacities of prepared samples were studied for the removal of Cu2+ ions from aqueous model solutions with varying experimental conditions of the initial metal concentration, contact time and dosage. It is found that the removal percent of Cu2+ ions increases with an increase in initial metal concentration, contact time and amount of dosage.

Originality/value

Based on the obtained results, this study recommends that chitosan-coated magnetite nanoparticles can also be applied for removal of some heavy metal ions and/or organic compounds in aqueous solution. It is recommended that this study be shared with the polymer-based nanomaterial researchers, especially material science.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2023

Ibrahim A. Amar, Aeshah Alzarouq, Wajdan Mohammed, Mengfei Zhang and Noarhan Matroed

This study aims to explore the possibility of using magnetic biochar composite (MBCC) derived from Heglig tree bark (HTB) powder (agricultural solid waste) and cobalt ferrite (CoFe…

Abstract

Purpose

This study aims to explore the possibility of using magnetic biochar composite (MBCC) derived from Heglig tree bark (HTB) powder (agricultural solid waste) and cobalt ferrite (CoFe2O4, CFO) for oil spill removal from seawater surface.

Design/methodology/approach

One-pot co-precipitation route was used to synthesize MBCC. The prepared materials were characterized by X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy. The densities of the prepared materials were also estimated. Crude, diesel engine and gasoline engine oils were used as seawater pollutant models. The gravimetric oil removal (GOR) method was used for removing oil spills from seawater using MBCC as a sorbent material.

Findings

The obtained results revealed that the prepared materials (CFO and MBCC) were able to remove the crude oil and its derivatives from the seawater surface. Besides, when the absorbent amount was 0.01 g, the highest GOR values for crude oil (31.96 ± 1.02 g/g) and diesel engine oil (14.83 ± 0.83 g/g) were obtained using MBCC as an absorbent. For gasoline engine oil, the highest GOR (27.84 ± 0.46 g/g) was attained when CFO was used as an absorbent.

Originality/value

Oil spill removal using MBCC derived from cobalt ferrite and HTB. Using tree bark as biomass (eco-friendly, readily available and low-cost) for magnetic biochar preparation also is a promising method for minimizing agricultural solid wastes (e.g. HTB) and obtaining value-added-products.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 March 2022

Ibrahim A. Amar, Sarah S. Kanah, Hibah A. Hijaz, Mabroukah A. Abdulqadir, Shamsi A. Shamsi, Ihssin A. Abdalsamed and Mohammed A. Samba

The purpose of this research is to assess the removal of oil spills from the seawater surface as well as the antibacterial activity of ZnFe2O4-cetyltrimethylammonium bromide…

Abstract

Purpose

The purpose of this research is to assess the removal of oil spills from the seawater surface as well as the antibacterial activity of ZnFe2O4-cetyltrimethylammonium bromide (CTAB, cationic surfactant) magnetic nanoparticles (ZFO-CTAB MNPs).

Design/methodology/approach

A CTAB-assisted sol–gel method was used to synthesize ZFO-CTAB MNPs. X-ray powder diffraction and Fourier transform infrared spectroscopy were used for ZFO-CTAB MNPs characterization. Also, the magnetic force and apparent density of ZFO-CTAB MNPs were determined. The oil spill cleanup was investigated by using the gravimetric oil removal (GOR) technique, which used ZFO-CTAB MNPs as oil absorbent material and four oil samples (crude, diesel, gasoline and used oil) as oil spill models. The antibacterial activity of ZFO-CTAB MNPs against Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi) was investigated by using the optical density method.

Findings

The results revealed that, when the amount of ZFO-CTAB was 0.01 g, gasoline oil had the highest GOR (51.80 ± 0.88 g/g) and crude oil had the lowest (11.29 ± 0.82 g/g). Furthermore, for Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa, ZFO-CTAB MNPs inhibited bacterial growth with a higher percentage (94.24%–95.63%).

Originality/value

The applications of ZFO-CTAB MNPs in the cleanup of oil spills from aqueous solutions, as well as their antibacterial activity. The results showed that ZFO-CTAB MNPs are a promising material for removing oil spills from bodies of water as well as an antibacterial agent against Gram-negative bacterial strains.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 March 2024

Khaled Mostafa and Azza El-Sanabary

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger…

Abstract

Purpose

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger surface area, biodegradability and high reactivity as a starting substrate for cadmium ions and basic dye removal from wastewater effluent. This was done via carboxylation of SNPs with citric acid via esterification reaction using the dry preparation technique, in which a simple, energy-safe and sustainable process concerning a small amount of water, energy and toxic chemicals was used. The obtained adsorbent is designated as cross-linked esterified starch nanoparticles (CESNPs).

Design/methodology/approach

The batch technique was used to determine the CESNPs adsorption capacity, whereas atomic adsorption spectrometry was used to determine the residual cadmium ions concentration in the filtrate before and after adsorption. Different factors affecting adsorption were examined concerning pH, contact time, adsorbent dose and degree of carboxylation. Besides, to validate the esterification reaction and existence of carboxylic groups in the adsorbent, CESNPs were characterized metrologically via analytical tools for carboxyl content estimation and instrumental tools using Fourier-transform infrared spectroscopy (FTIR) spectra and scanning electron microscopy (SEM) morphological analysis.

Findings

The overall adsorption potential of CESNPs was found to be 136 mg/g when a 0.1 g adsorbent dose having 190.8 meq/100 g sample carboxyl content at pH 5 for 60 min contact time was used. Besides, increasing the degree of carboxylation of the CESNPs expressed as carboxyl content would lead to the higher adsorption capacity of cadmium ions. FTIR spectroscopy analysis elucidates the esterification reaction with the appearance of a new intense peak C=O ester at 1,700 cm−1, whereas SEM observations reveal some atomic/molecules disorder after esterification.

Originality/value

The innovation addressed here is undertaken by studying the consequence of altering the extent of carboxylation reaction expressed as carboxyl contents on the prepared CESNPs via a simple dry technique with a small amount of water, energy and toxic chemicals that were used as a sustainable bio nano polymer for cadmium ions and basic dye removal from wastewater effluent in comparison with other counterparts published in the literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 August 2021

Maryam Sadat Seyedi, Mahmoud Reza Sohrabi, Fereshteh Motiee and Saeid Mortazavinik

The purpose of this paper is to analyze nano zero-valent iron (nZVI)-activated carbon/Nickel (nZVI-AC/Ni) by a novel method. The synthesized adsorbent was used to degrade reactive…

Abstract

Purpose

The purpose of this paper is to analyze nano zero-valent iron (nZVI)-activated carbon/Nickel (nZVI-AC/Ni) by a novel method. The synthesized adsorbent was used to degrade reactive orange 16 (RO 16) azo dye.

Design/methodology/approach

The optimum conditions for the highest removal of RO 16 dye were determined. Characterization of nZVI-AC/Ni was done by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The nZVI-AC/Ni were used for the removal of dye RO 16 and the parameters affecting were discussed such as pH, adsorbent dosage, contact time and concentration of dye. To investigate the variables and interaction between them, an analysis of variance test was performed.

Findings

The characterization results show that the synthesis of nZVI-AC/Ni caused no aggregation of nanoparticles. The maximum dye removal efficiency of 99.45% occurred at pH 4, the adsorbent dosage = 0.1 gL-1 and the dye concentration of 10 mgL-1. Among various algorithms of feed-forward backpropagation neural network, Levenberg–Marquardt with mean square error (MSE) = 9.86 × 10–22 in layer = 5 and the number of neurons = 9 was selected as the best algorithm. On the other hand, the MSE of the radial basis function model was 0.2159 indicating the good ability of the model to predict the percentage of dye removal.

Originality/value

There are two main innovations. One is that the novel nZVI-AC/Ni was prepared successfully. The other is that the optimized conditions were obtained for the removal of RO 16 dye from an aqueous solution. Furthermore, to the best of the knowledge, no study has ever investigated the removal of RO 16 by nZVI-AC/Ni produced.

Details

Pigment & Resin Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 June 2020

Ilhem Ghodbane, Saida Zougar, Rim Lamari and Rochdi Kherrrat

This paper aims to focus on the development and characterization of a new electrochemical sensor, designed for the detection of methylene blue present in aqueous medium.

Abstract

Purpose

This paper aims to focus on the development and characterization of a new electrochemical sensor, designed for the detection of methylene blue present in aqueous medium.

Design/methodology/approach

This sensor is obtained through the coupling of a polymeric membrane and an ion-sensitive electrode (platinum electrode). The preparation of the polymeric membrane involves the incorporation of a receptor: β-cyclodextrin (β-CD), a polymer (polyvinylchloride) and a plasticizer (dioctylphtalate). Cyclic voltammetry method (CV) was used to investigate the electrical properties of this electrochemical sensor. The effect of the experimental parameters such as dye initial concentration, scan rate, interfering elements presence and additional Nafion membrane presence was investigated in this paper.

Findings

The results are interesting because the developed sensor gives a linear response in concentrations range of 10−13 M–10−3 M with a good correlation coefficient of 0.979 and a detection limit of 10−13 M, which reflects the sensitivity of this sensor to the target element. The sensibility value is equal to 2. 40 µA mol−1 L.

Originality/value

The present study has shown that the modified electrode is a very good candidate in terms of price, sensibility and reproducibility for the construction of the sensitive sensor for the control of wastewater containing methylene blue.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 March 2024

Fatemeh Mollaamin and Majid Monajjemi

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Abstract

Purpose

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Design/methodology/approach

BNNc was modeled in the presence of doping atoms of titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), copper (Cu) and zinc (Zn) which can increase the gas sensing ability of BNNc. In this research, the calculations have been accomplished by CAM–B3LYP–D3/EPR–3, LANL2DZ level of theory. The trapping of CO molecules by (Ti, V, Cr, Co, Cu, Zn)–BNNc has been successfully incorporated because of binding formation consisting of C → Ti, C → V, C → Cr, C → Co, C → Cu, C → Zn.

Findings

Nuclear quadrupole resonance data has indicated that Cu-doped or Co-doped on pristine BNNc has high fluctuations between Bader charge versus electric potential, which can be appropriate options with the highest tendency for electron accepting in the gas adsorption process. Furthermore, nuclear magnetic resonance spectroscopy has explored that the yield of electron accepting for doping atoms on the (Ti, V, Cr, Co, Cu, Zn)–BNNc in CO molecules adsorption can be ordered as follows: Cu > Co >> Cr > Zn ˜ V> Ti that exhibits the strength of the covalent bond between Ti, V, Cr, Co, Cu, Zn and CO. In fact, the adsorption of CO gas molecules can introduce spin polarization on the (Ti, V, Cr, Co, Cu, Zn)–BNNc which specifies that these surfaces may be used as magnetic-scavenging surface as a gas detector. Gibbs free energy based on IR spectroscopy for adsorption of CO molecules adsorption on the (Ti, V, Cr, Co, Cu, Zn)–BNNc have exhibited that for a given number of carbon donor sites in CO, the stabilities of complexes owing to doping atoms of Ti, V, Cr, Co, Cu, Zn can be considered as: CO →Cu–BNNc >> CO → Co–BNNc > CO → Cr–BNNc > CO → V–BNNc > CO → Zn–BNNc > CO → Ti–BNNc.

Originality/value

This study by using materials modeling approaches and decorating of nanomaterials with transition metals is supposed to introduce new efficient nanosensors in applications for selective sensing of carbon monoxide.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 14