Search results

1 – 10 of 221
Article
Publication date: 20 April 2023

Lezhi Ye, Xuanjie Song and Chang Yue

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement…

83

Abstract

Purpose

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement stroke, position calibration error and low production efficiency in optical alignment, this paper aims to propose a new wafer magnetic alignment technology (MAT) which is based on tunnel magneto resistance effect. MAT can realize micro distance alignment and reduces the design and manufacturing difficulty of wafer bonding equipment.

Design/methodology/approach

The current methods and existing problems of wafer optical alignment are introduced, and the mechanism and realization process of wafer magnetic alignment are proposed. Micro magnetic column (MMC) marks are designed on the wafer by the semiconductor manufacturing process. The mathematical model of the space magnetic field of the MMC is established, and the magnetic field distribution of the MMC alignment is numerically simulated and visualized. The relationship between the alignment accuracy and the MMC diameter, MMC remanence, MMC thickness and sensor measurement height was studied.

Findings

The simulation analysis shows that the overlapping double MMCs can align the wafer with accuracy within 1 µm and can control the bonding distance within the micrometer range to improve the alignment efficiency.

Originality/value

Magnetic alignment technology provides a new idea for wafer bonding alignment, which is expected to improve the accuracy and efficiency of wafer bonding.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 9 January 2024

Jian Kang, Libei Zhong, Bin Hao, Yuelong Su, Yitao Zhao, Xianfeng Yan and Shuanghui Hao

Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders…

Abstract

Purpose

Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders have a complex structure and large sensor volume and are thus not suited to small application scenarios and do not have universality. This paper aims to present a new absolute magnetic linear encoder, which has a simple structure, small size and wide application range.

Design/methodology/approach

The effect of swing error is analyzed for the sensor structural arrangement. A double-threshold interval algorithm is then proposed to synthesize multiple interval electrical angles into absolute angles and convert them into actual displacement distances.

Findings

The final linear encoder measurement range is 15.57 mm, and the resolution reaches ± 2 µm. The effectiveness of the algorithm is demonstrated experimentally.

Originality/value

The linear encoder has good robustness, and high measurement accuracy, which is suitable for industrial production. The linear encoder has been mass-produced and used in an electric power-assisted braking system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 December 2023

Abdelazeem Hassan Shehata Atyia and Abdelrahman Mohamed Ghanim

The accurate modeling of magnetic hysteresis in electrical steels is important in several electrical and electronic applications. Numerical models have long been known that can…

Abstract

Purpose

The accurate modeling of magnetic hysteresis in electrical steels is important in several electrical and electronic applications. Numerical models have long been known that can correctly reproduce some typical behaviours of these magnetic materials. Among these, the model proposed by Jiles and Atherton must certainly be mentioned. This model is intuitive and fairly easy to implement and identify with relatively few experimental data. Also, for this reason, it has been extensively studied in different formulations. The developments and numerical tests made on this hysteresis model have indicated that it is able to accurately reproduce symmetrical cycles, especially the major loop, but often it fails to reproduce non-symmetrical cycles. This paper aims to show the positive aspects and highlight the defects of the different formulations in predicting the minor loops of electrical steels excited by non-sinusoidal currents.

Design/methodology/approach

The different formulations are applied to different electrical steels, and the data coming from the simulations are compared with those measured experimentally. The direct and inverse Jiles–Atherton models, including the introduction of the dissipative factor approach, are presented, and their limitations are proposed and validated using the measurements of three non-grain-oriented materials. Only the measured major loop is used to identify the parameters of the Jiles–Atherton model. Furthermore, the direct and inverse Jiles–Atherton models were used to simulate the minor loops as well as the hysteresis cycles with direct component (DC) bias excitation. Finally, the simulation results are discussed and compared to measurements for each study case.

Findings

The paper indicates that both the direct and the inverse Jiles–Atherton model formulations provide a good agreement with the experimental data for the major loop representation; nevertheless, both models can not accurately predict the minor loops even when the modification approaches proposed in the literature were implemented.

Originality/value

The Jiles–Atherton model and its modifications are widely discussed in the literature; however, some limitations of the model and its modification in the case of the distorted current waveform are not completely highlighted. Furthermore, this paper contains an original discussion on the accuracy of the prediction of minor loops from distorted current waveforms, including DC bias.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 8 April 2024

Oussama-Ali Dabaj, Ronan Corin, Jean-Philippe Lecointe, Cristian Demian and Jonathan Blaszkowski

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a…

Abstract

Purpose

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a single-phase magnetic core.

Design/methodology/approach

This paper presents the results of finite-element method (FEM) simulations investigating the impact of mixing two different GOES grades on losses of a single-phase magnetic core. The authors used different models: a 3D model with a highly detailed geometry including both saturation and anisotropy, as well as a simplified 2D model to save computation time. The behavior of the flux distribution in the mixed magnetic core is analyzed. Finally, the results from the numerical simulations are compared with experimental results.

Findings

The specific iron losses of a mixed magnetic core exhibit a nonlinear decrease with respect to the GOES grade with the lowest losses. Analyzing the magnetic core behavior using 2D and 3D FEM shows that the rolling direction of the GOES grades plays a critical role on the nonlinearity variation of the specific losses.

Originality/value

The novelty of this research lies in achieving an optimum trade-off between the manufacturing cost and the core efficiency by combining conventional and high-performance GOES grade in a single-phase magnetic core.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2024

Guilherme Homrich, Aly Ferreira Flores Filho, Paulo Roberto Eckert and David George Dorrell

This paper aims to introduce an alternative for modeling levitation forces between NdFeB magnets and bulks of high-temperature superconductors (HTS). The presented approach should…

Abstract

Purpose

This paper aims to introduce an alternative for modeling levitation forces between NdFeB magnets and bulks of high-temperature superconductors (HTS). The presented approach should be evaluated through two different formulations and compared with experimental results.

Design/methodology/approach

The T-A and H-ϕ formulations are among the most efficient approaches for modeling superconducting materials. COMSOL Multiphysics was used to apply them to magnetic levitation models and predict the forces involved.The permanent magnet movement is modeled by combining moving meshes and magnetic field identity pairs in both 2D and 3D studies.

Findings

It is shown that it is possible to use the homogenization technique for the T-A formulation in 3D models combined with mixed formulation boundaries and moving meshes to simulate the whole device’s geometry.

Research limitations/implications

The case studies are limited to the formulations’ implementation and a brief assessment regarding degrees of freedom. The intent is to make the simulation straightforward rather than establish a benchmark.

Originality/value

The H-ϕ formulation considers the HTS bulk domain as isotropic, whereas the T-A formulation homogenization approach treats it as anisotropic. The originality of the paper lies in contrasting these different modeling approaches while incorporating the external magnetic field movement by means of the Lagrangian–Eulerian method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2023

Junan Ji, Zhigang Zhao, Shi Zhang and Tianyuan Chen

This paper aims to propose an energetic model parameter calculation method for predicting the materials’ symmetrical static hysteresis loop and asymmetrical minor loop to improve…

Abstract

Purpose

This paper aims to propose an energetic model parameter calculation method for predicting the materials’ symmetrical static hysteresis loop and asymmetrical minor loop to improve the accuracy of electromagnetic analysis of equipment.

Design/methodology/approach

For predicting the symmetrical static hysteresis loop, this paper deduces the functional relationship between magnetic flux density and energetic model parameters based on the materials’ magnetization mechanism. It realizes the efficient and accurate symmetrical static hysteresis loop prediction under different magnetizations. For predicting the asymmetrical minor loop, a new algorithm is proposed that updates the energetic model parameters of the asymmetrical minor loop to consider the return-point memory effect.

Findings

The comparison of simulation and experimental results verifies that the proposed parameters calculation method has high accuracy and strong universality.

Originality/value

The proposed parameter calculation method improves the existing parameter calculation method’s problem of relying on too much experimental data and inaccuracy. Consequently, the presented work facilitates the application of the finite element electromagnetic field analysis method coupling the hysteresis model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 January 2024

Rohit R. Salgude, Prasad Pailwan, Sunil Pimplikar and Dipak Kolekar

Soil is an essential component of road construction and is used in the form of subgrade materials. It ensures the stability and durability of the road under adverse conditions;…

Abstract

Purpose

Soil is an essential component of road construction and is used in the form of subgrade materials. It ensures the stability and durability of the road under adverse conditions; being one of the important parameters, poor judgment of the engineering properties of soil can lead to pavement failure. Geopathic stress (GS) is a subtle energy in the form of harmful electromagnetic radiation. This study aims to investigate the effect of GS on soil and concrete.

Design/methodology/approach

A total of 23 soil samples from stress zones and nonstress zones were tested for different engineering properties like water content, liquid limit, plastic limit, specific gravity and California bearing ratio. Two concrete panels were placed on GS zones, and their quality was monitored through nondestructive testing for a period of one year.

Findings

The result shows that the engineering properties of soil and pavement thickness are increasing in stress zones as compared with nonstress zones. For concrete panels, as time passes, the quality of the concrete gets reduced, which hints toward the detrimental effect of GS.

Originality/value

This research is a systematic, scientific, reliable study which evaluated subgrade characteristics thus determining the detrimental impact of the GS on soil and pavement thickness. On a concluding note, this study provides a detailed insight into the performance of the road segment when subjected to GS. Through this investigation, it is recommended that GS should be considered in the design of roads.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2024

Meng Wang, Yongheng Li, Yanyan Shi and Fenglan Huang

With the development of artificial intelligence, proximity sensors show their great potential in intelligent perception. This paper aims to propose a new planar capacitive sensor…

Abstract

Purpose

With the development of artificial intelligence, proximity sensors show their great potential in intelligent perception. This paper aims to propose a new planar capacitive sensor for the proximity sensing of a conductor.

Design/methodology/approach

Different from traditional structures, the proposed sensor is characterized by sawtooth-structured electrodes. A series of numerical simulations have been carried out to study the impact of different geometrical parameters such as the width of the main trunk, the width of the sawtooth and the number of sawtooths. In addition, the impact of the lateral offset of the approaching graphite block is investigated.

Findings

It is found that sensitivity is improved with the increase of the main trunk with, sawtooth width and sawtooth number while a larger lateral offset leads to a decrease in sensitivity. The performance of the proposed planar capacitive proximity sensor is also compared with two conventional planar capacitive sensors. The results show that the proposed planar capacitive sensor is obviously more sensitive than the two conventional planar capacitive sensors.

Originality/value

In this paper, a new planar capacitive sensor is proposed for the proximity sensing of a conductor. The results show that the capacitive sensor with the novel structure is obviously more sensitive than the traditional structures in the detection of the proximity conductor.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 April 2024

Zhenbao Wang, Zhen Yang, Mengyu Liu, Ziqin Meng, Xuecheng Sun, Huang Yong, Xun Sun and Xiang Lv

Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of…

Abstract

Purpose

Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of this paper is to further optimize the line spacing to improve the performance of meanders for sensor application.

Design/methodology/approach

The model of GMI effect of microribbon with meander type is established. The effect of line spacing (Ls) on GMI behavior in meanders is analyzed systematically.

Findings

Comparison of theory and experiment indicates that decreasing the line spacing increases the negative mutual inductance and a consequent increase in the GMI effect. The maximum value of the GMI ratio increases from 69% to 91.8% (simulation results) and 16.9% to 51.4% (experimental results) when the line spacing is reduced from 400 to 50 µm. The contribution of line spacing versus line width to the GMI ratio of microribbon with meander type was contrasted. This behavior of the GMI ratio is dominated by the overall negative contribution of the mutual inductance.

Originality/value

This paper explores the effect of line spacing on the GMI ratio of meander type by comparing the simulation results with the experimental results. The superior line spacing is found in the identical sensing area. The findings will contribute to the design of high-performance micropatterned ribbon with meander-type GMI sensors and the establishment of a ribbon-based magnetic-sensitive biosensing system.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 221